
DCT: Diskrete Kosinus-Transformation

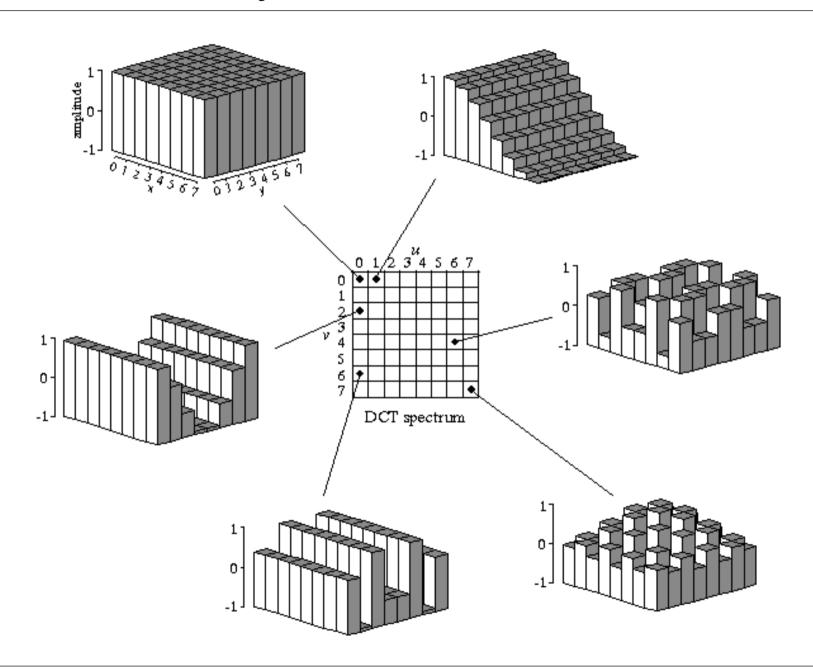
Kosinusfunktionen für die 1D DCT: zunehmende Frequenz entsprechende Abtastpunkte

(Salomon)

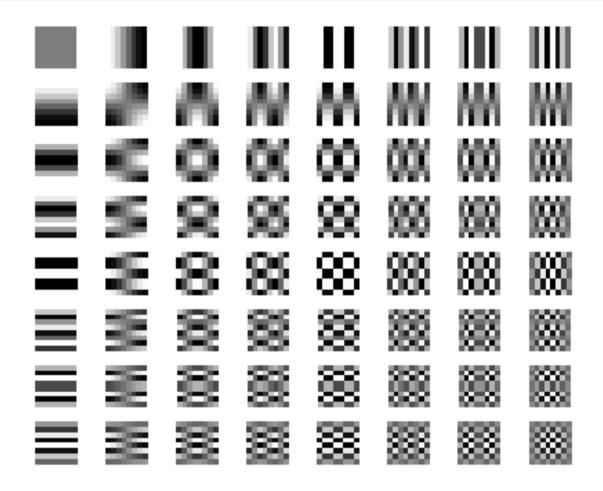
DCT: 8x8 2D-Transformation

DCT:
$$G_{ij} = \frac{1}{4} C_i C_j \sum_{x=0}^{7} \sum_{y=0}^{7} p_{xy} \cos\left(\frac{(2x+1)i\pi}{16}\right) \cos\left(\frac{(2y+1)j\pi}{16}\right),$$
 where $C_f = \begin{cases} \frac{1}{\sqrt{2}}, & f = 0, \\ 1, & f > 0, \end{cases}$ and $0 \le i, j \le 7$.

IDCT:
$$p_{xy} = \frac{1}{4} \sum_{i=0}^{7} \sum_{j=0}^{7} C_i C_j G_{ij} \cos\left(\frac{(2x+1)i\pi}{16}\right) \cos\left(\frac{(2y+1)j\pi}{16}\right),$$
 where $C_f = \begin{cases} \frac{1}{\sqrt{2}}, & f = 0; \\ 1, & f > 0. \end{cases}$

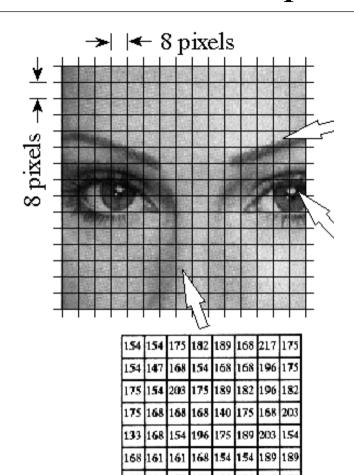

effiziente Implementierung?

- Vorberechnung der cos(x) Terme
- Kombination von 1D-Transformationen
- zeilenweise Berechnung
- MMX, SSE, Spezialhardware


(min. Anzahl von Ops)

(Cache-freundlich)

DCT: Basisfunktionen



DCT: Basisfunktionen

- die Basisfunktionen der 2D 8x8 DCT
- entsprechende Bilder liefern max. Antwort der DCT
 1 (weiß) .. 0 (grau) .. -1 (schwarz)

DCT: Beispiel

175	154	203	1/5	189	184	130	184
175	168	168	168	140	175	168	203
133	168	154	196	175	189	203	154
168	161	161	168	154	154	189	189
		175					
175	175	203	175	189	175	175	182

							3	,	6	-9
							2	0	3	1
,	184			3	v	-4	٥	0	0	-1
ļ	203			-4	-6	-2	1	-1	4	-10
į	154			1	2	-2	0	0	-2	0
)	189			3	·l	3	-2	2	1	1
,	175			3	5	2	-2	3	0	4
í	182			4	-3	-13	3	4	3	-5
_		-	Ι ΄							

ectrum

Spectrum | Quantization Error

•	spe	ctr	um			g. I	Usi	ng	10	bits	3		
	1	0	-3	1		0	0	0	0	-1	0	0	0
	-4	-4	5	-8		-1	0	0	0	0	0	0	-1
	3	2	0	9		0	0	0	0	0	0	0	0
	0	-5	-1	0		0	0	0	0	0	0	0	0
	4	4	2	0		0	0	0	0	0	0	0	0
	0	0	1	1		0	0	1	0	0	0	-1	0
	3	2	-1	-1		0	0	0	0	0	0	0	0
	0	0	-4	0		0	0	0	0	0	0	0	0

Ŋ	n Latata				h. I	Usi	ng	8 b	its			
	-10	-1	0		0	-3	-1	-1	1	0	0	-1
	13	1	3		1	0	-1	-1	0	0	0	-1
	-6	5	-3		-1	-2	1	0	-2	0	-2	-2
	-1	0	-1		-1	-2	-1	2	0	2	0	1
	1	-1	4		0	-2	1	0	0	1	0	0
	-1	5	6		0	-4	-1	0	1	0	0	0
	2	-3	5		0	-2	0	1	-1	-1	1	-1
	2	1	0		-1	-3	1	1	1	-3	-2	-1

i. L	i. Using 5 bits											
-13	-7	1	4	0	0	10	-2					
-22	6	-13	5	-5	2	-2	-13					
-9	-15	0	-17	-8	8	12	25					
-9	16	1	9	1	-5	-5	13					
-20	-3	-13	-16	-19	-1	4	-22					
-11	6	-8	16	-9	-3	-7	6					
-14	10	-9	4	-15	3	3	-4					
-13	19	12	9	18	5	-5	10					

(DSP Guide)

JPEG: Übersicht

JPEG := "Joint Picture Experts Group"

- Verfahren zur Kodierung von Grau- und Farbbildern
- 1991 standardisiert
- diverse Varianten, "baseline" oder "lossless"

Kodierung via DCT von Blöcken a 8x8 Pixeln YCbCr Farbmodell (Farbsubsampling)
Kompressionsraten bis ca. 40:1 möglich

JFIF: Bezeichnung für das Dateiformat (.jpg,.jpeg)

JBIG: "Joint Bi-level image experts group" (s/w-Bilder)

JPEG-2000: aktuelle, erweiterte Version

(www.jpeg.org)

JPEG: Konzepte, Ziele

sehr flexibles Format:

- fast beliebige Bildauflösung
- beliebiges Bild/Pixel-Aspektverhältnis
- unabhängig vom Farbmodell
- für alle Arten von Bildern, aber insb. für Photos
- progressive Kodierung (schnelle Vorschau)

- Implementierung in Software, bei Bedarf in Hardware:
- "Motion-JPEG", Anwendung für Video

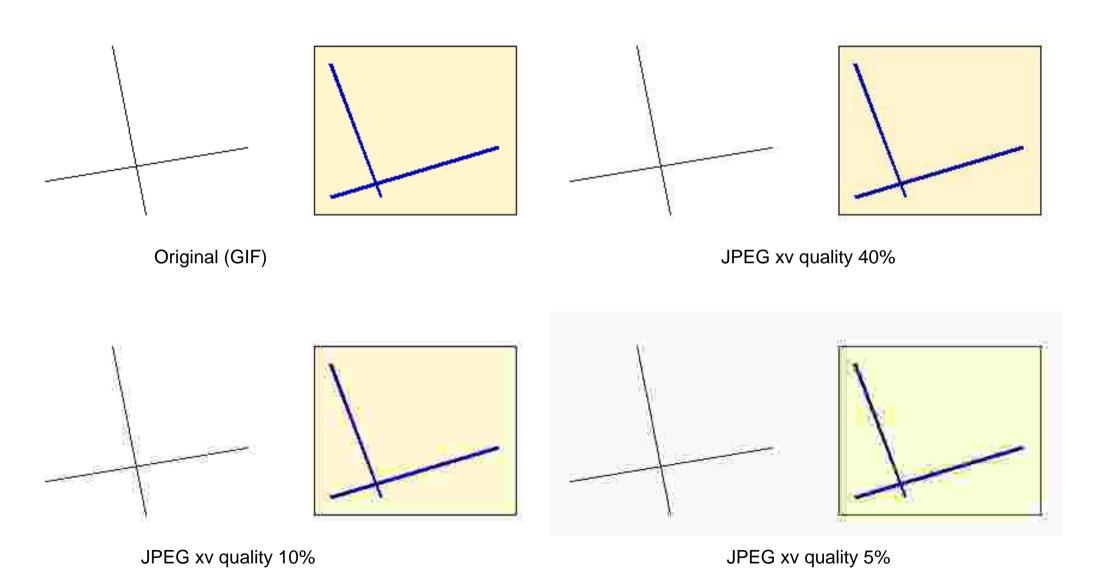
JPEG: Beispiel

229 KByte, 3:1, 7 bpp

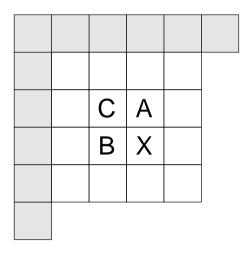
24 KByte, 32:1, 0.74 bpp

18 KByte, 43:1

12 KByte, 66:1, 0.36 bpp

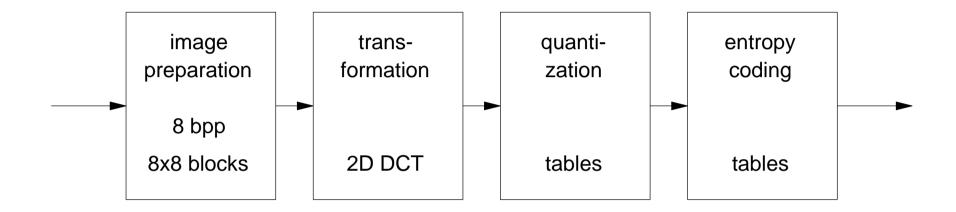

10 KByte, 78:1

5 KByte, 140:1, 0.17 bpp


- => Vergleich: PPM-raw, 512x512x24: 786 KByte, 24 bpp
- => praktisch optimale Qualität bei 10:1, brauchbar bis ca. 40:1

JPEG: "ringing"

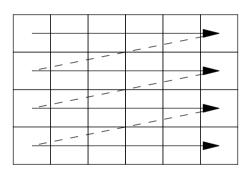
- => Überschwingen der Kosinusfunktionen bei harten Bildkontrasten
- => verstärkter Effekt bei starker Kompression wegen fehlender Koeffizienten


JPEG: verlustfreie Kodierung

Nr.	Vorhersage V:
0	-
1	A
2	В
3	С
4	A+B-C
5	A+(B-C)/2
6	B+(A-C)/2
7	(A+B)/2

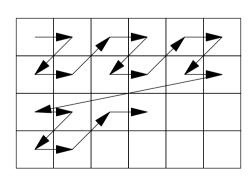
- Vorhersage V von Pixelwerten aus Nachbarpixeln
- sieben verschiedene Algorithmen für V
- kodiert Index des Algorithmus und Differenz (X-V)
- anschliessend Huffman-Kodierung
- Kompressionsfaktor ca. 2

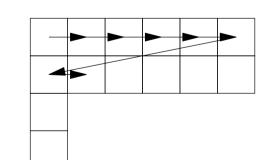
JPEG: Verarbeitungsschritte

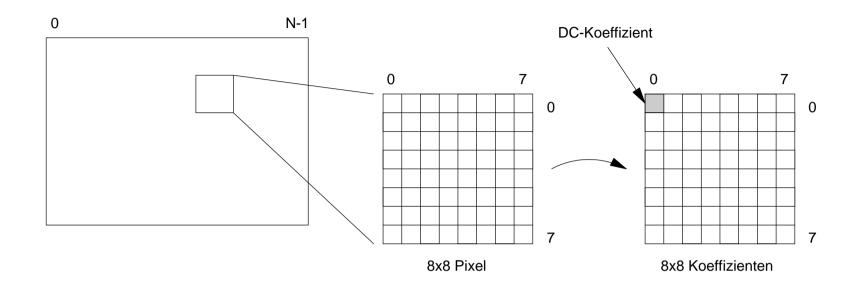


- Eingangsdaten in YUV-Darstellung und auf 8 bits/pixel wandeln
- Aufteilung in Blöcke, feste Größe 8x8
- 2D Kosinustransformation
- Quantisierung der Koeffizienten, feste (oder variable) Tabellen
- kombinierte Huffman-/Runlength-Kodierung

JPEG: Vorbereitung


verlustfreie Kodierung mit 2 .. 16 bpp verlustbehaftete Kodierung intern mit 8 bpp / 12 bpp


"normale" Kodierung:


= Block mit 8x8 Pixeln

"interleaved" (progressive)

JPEG: Blöcke

- JPEG transformiert Blöcke, nicht einzelne Pixel
- Annahme: benachbarte Pixel haben ähnliche Werte
- => nach der 2D-DCT liegen die größten Koeffizienten "links oben"
- kein Ausnutzen von Korrelationen über Blockgrenzen hinaus
- Neigung zu "Blockartefakten" bei starker Kompression

JPEG: Quantisierung

Original Group

DCT Spectrum

Quantization Error

a. Eyebrow

231	224	224	217	217	203	189	196
210	217	203	189	203	224	217	224
196	217	210	224	203	203	196	189
210	203	196	203	182	203	182	189
203	224	203	217	196	175	154	140
182	189	168	161	154	126	119	112
175	154	126	105	140	105	119	84
154	98	105	98	105	63	112	84

d. Eyebrow spectrum

174	19	0	3	1	0	-3	1
52	-13	-3	-4	-4	-4	5	-8
-18	-4	8	3	3	2	0	9
5	12	-4	0	0	-5	-1	0
1	2	-2	-1	4	4	2	0
-1	2	_	3	0	0	1	1
-2	5	-5	-5	3	2	-1	-1
3	5	-7	0	0	0	-4	0

g. Using 10 bits

0	0	0	0	-1	0	0	0
-1	0	0	0	0	0	0	-1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	1	0	0	0	-1	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

 typisches Beispiel für (gerundete) Wert der Koeffizienten

b. Eye

42	28	35	28	42	49	35	42
49	49	35	28	35	35	35	42
42	21	21	28	42	35	42	28
21	35	35	42	42	28	28	14
56	70	77	84	91	28	28	21
70	126	133	147	161	91	35	14
126	203	189	182	175	175	35	21
49	189	245	210	182	84	21	35

e. Eye spectrum

70	24	-28	-4	-2	-10	-1	0
-53	-35	43	13	7	13	1	3
23	9	-10	-8	-7	-6	5	-3
6	2	-2	8	2	-1	0	-1
-10	-2	-1	-12	2	1	-1	4
3	0	0	11	-4	-1	5	6
-3	-5	-5	-4	3	2	-3	5
3	0	4	5	1	2	1	0

h. Using 8 bits

0	-3	-1	-1	1	0	0	-1
1	0	-1	-1	0	0	0	-1
-1	-2	1	0	-2	0	-2	-2
-1	-2	-1	2	0	2	0	1
0	-2	1	0	0	1	0	0
0	-4	-1	0	1	0	0	0
0	-2	0	1	-1	-1	1	-1
-1	-3	1	1	1	-3	-2	-1

weitere Quantisierung:
 Koeffizienten durch
 Tabellenwerte teilen

c. Nose

				189			
154	147	168	154	168	168	196	175
175	154	203	175	189	182	196	182
175	168	168	168	140	175	168	203
133	168	154	196	175	189	203	154
168	161	161	168	154	154	189	189
147	161	175	182	189	175	217	175
175	175	203	175	189	175	175	182

f. Nose spectrum

i. Nose spectrum									
174	-11	-2	-3	-3	6	-3	4		
-2	-3	1	2	0	3	1	2		
3	0	-4	0	0	0	-1	9		
-4	-6	-2	1	-1	4	-10	-3		
1	2	-2	0	0	-2	0	-5		
3	·l	3	-2	2	1	1	0		
3	5	2	-2	3	0	4	3		
4	-3	-13	3	4	3	-5	3		

i. Using 5 bits

-13	-7	1	4	0	0	10	-2
-22	6	-13	5	-5	2	-2	-13
-9	-15	0	-17	-8	8	12	25
-9	16	1	9	1	-5	-5	13
-20	-3	-13	-16	-19	-1	4	-22
-11	6	-8	16	-9	3	-7	6
-14	10	-9	4	-15	3	3	-4
-13	19	12	9	18	5	-5	10

JPEG: Quantisierung: Tabellen

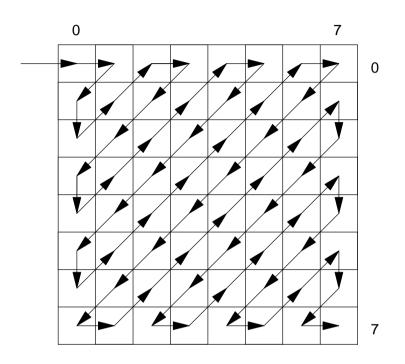
```
16
    11
        10 16
                 24
                     40
                         51
                             61
12
        14
            19
                 26
                     58
                              55
        16
            24
                 40
                     57
                         69
14
    13
                              56
        22
            29
                 51
                     87
14
                              62
        37
             56
                 68 109 103
18
                              77
    35
        55
            64 81 104 113
24
                             92
        78
            87 193 121 120 101
        95 98 112 100 103
72
    92
                              99
```

Quantisierung für Luminanz (Y)

```
17
    18
         24
              47
                   99
                        99
                             99
                                  99
         26
              66
18
                   99
                        99
                             99
                                  99
    26
         56
              99
                   99
                        99
                            99
                                 99
2.4
    66
         99
              99
                   99
                        99
                            99
                                 99
47
    99
         99
              99
                   99
                        99
                            99
                                 99
99
         99
              99
                   99
                        99
                            99
                                 99
99
    99
         99
              99
                   99
                        99
                            99
99
                                 99
                   99
                             99
99
     99
         99
              99
                        99
                                  99
```

Quantisierung für Chrominanz (UV)

- einzelne Koeffizienten nach DCT bereits gerundet
- weitere Quantisierung nach Tabellen,
- einzelner Koeffizient wird durch Tabellenwert geteilt
- vordefinierte Tabellen nutzen physiologische Daten
 Beispiel: Y00' = Y00/16, V13' = V13/66, usw.


JPEG: Quantisierung: Beispiel

32	4	-3	0	0	0	1	0	$\overline{7}$	0	0	0	0	0	0	0	0
6	-2	0	0	-2	0	0	1		0	0	0	0	0	0	0	0
-7	3	2	0	0	2	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
6	0	1	0	0	0	0	0		0	0	0	0	0	0	0	0
0	-1	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
_0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
(a)									(b)						

Table 4.53: (a) The Quantized Coefficients of Table 4.49. (b) Those of Table 4.50.

- Beispiel für (typ.) Werte der quantisierten Koeffizienten
- DC-Koeffizient hat großen Wert
- Koeffizienten "links oben" sind klein oder null
- Koeffizienten "rechts unten" sind (fast) alle null
- weitere Kodierung mit Huffman/Runlength-Verfahren

JPEG: ZigZag

DC AC01 AC10 AC20 AC11 AC02 ...
AC03 AC12 AC21 ... AC76 AC77

- Koeffizienten kleiner Frequenz liegen "oben links"
- "ZigZag"-Anordnung der Koeffizienten für die Huffman-Phase
- erzeugt Paare von "00..00"-Folgen und kleinen Integern
- lange "000..0" Folge am Ende

JPEG: Huffman

Beispiel-Sequenz von Koeffizienten (nach der Quantisierung):

```
1118, 2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,...
```

(Z, V)-Paare: Anzahl der Nullen vor dem Wert V

```
DC=1118, (0,2), (1,-2), (13,-1), (...
```

- Kodetabellen für (Z,V)-Paare
- Zahldarstellung mit r bits, r abhängig von Tabellenzeile

am Ende (EOB) Marker, z.B. 64 Koeffizienten -> 50 bits

JPEG: Huffman-Tabellen

			R		
Z	1 6	2 7	3 8	4 9	5 A
0	00 1111000	01 11111000	100 1111110110	1011 11111111110000010	11010 11111111110000011
1	1100 11111111110000100	11011 11111111110000101	11110001 11111111110000110	$\begin{array}{c} 111110110 \\ 111111111110000111 \end{array}$	111111110110 11111111110001000
2	11100 1111111110001010	11111001 1111111110001011	1111110111 111111110001100	111111110100 1111111110001101	1111111110001001 1111111110001110
3	111010 11111111110010001	111110111 11111111110010010	$\begin{array}{c} 1111111110101 \\ 111111111110010011 \end{array}$	$\begin{array}{c} 11111111110001111 \\ 111111111110010100 \end{array}$	
4	111011 1111111110011001	$\begin{array}{c} 11111111000 \\ 111111111110011010 \end{array}$		$\begin{array}{c} 11111111110010111 \\ 111111111110011100$	
5	$\begin{array}{c} 1111010 \\ 111111111110100001 \end{array}$	$\begin{array}{c} 111111110111 \\ 111111111110100010 \end{array}$		$\begin{array}{c} 11111111110011111 \\ 111111111110100100 \end{array}$	
6	$\begin{array}{c} 1111011 \\ 11111111110101001 \end{array}$	$\begin{array}{c} 1111111110110 \\ 111111111110101010 \end{array}$		$\begin{array}{c} 11111111110100111 \\ 111111111110101100 \end{array}$	
7	11111010 11111111110110001	$\begin{array}{c} 1111111110111 \\ 111111111110110010 \end{array}$		$\begin{array}{c} 11111111110101111 \\ 111111111110110100 \end{array}$	
8	111111000 11111111110111001	$\begin{array}{c} 1111111111000000 \\ 111111111110111010 \end{array}$		$\begin{array}{c} 111111111110110111 \\ 11111111111011110$	
9	111111001 11111111111000010	$\begin{array}{c} 11111111110111110 \\ 111111111111000011 \end{array}$		$\begin{array}{c} 111111111111000000 \\ 111111111111000101 \end{array}$	
A	111111010 11111111111001011	$\begin{array}{c} 11111111111000111 \\ 111111111111001100 \end{array}$		$\begin{array}{c} 11111111111001001 \\ 111111111111001110 \end{array}$	
В	1111111001 11111111111010100	$\begin{array}{c} 111111111111010000 \\ 111111111111010101 \end{array}$		$\begin{array}{c} 111111111111010010 \\ 111111111111010111 \end{array}$	
С	1111111010 11111111111011101	$\begin{array}{c} 111111111111011001 \\ 111111111111011110 \end{array}$		$\begin{array}{c} 111111111111011011 \\ 111111111111100000 \end{array}$	
D	$\begin{array}{c} 111111111000 \\ 111111111111100110 \end{array}$	$\begin{array}{c} 111111111111100010 \\ 111111111111100111 \end{array}$		$\begin{array}{c} 11111111111100100 \\ 111111111111101001 \end{array}$	
Е		$\begin{array}{c} 111111111111101100 \\ 1111111111111110001 \end{array}$			
F	11111111001 11111111111111001	11111111111110101 111111111111111010		11111111111110111 1111111111111111101	
					~ ~ .

Table 4.56: Recommended Huffman Codes For Luminance AC Coefficients.

(erster Teil der Tabelle)

JPEG2000

JPEG hat sich bewährt

aber diverse Erweiterungen wünschenswert:

- bessere Qualität bei geringen Bitraten (< 0.25 bpp)
- einheitliches Format für S/W-, Grau-, und Farbbilder
- Kombination von verlustfreier und verlustbehafteter Kodierung:
- progressive Kodierung: Vorschau ... verlustfreie Kodierung
- Qualitätsstufen, z.B. 72 dpi Monitor vs. 2400dpi Drucker
- "region of interest" Kodierung
- Robustheit, bessere Korrektur von Bitfehlern
- offene, erweiterbare Architektur
- Unterstützung für Indizierung / Inhaltssuche / MPEG-7
- Unterstützung für Verschlüsselung, Wasserzeichen, ...

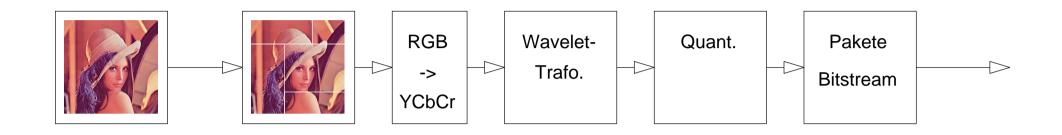
(Christopoulos, IEEE Tr. CE 46-4, 1103, 2000)

JPEG 2000

ähnliches Prinzip wie JPEG:

JPEG JPEG 2000

Bildvorbereitung, Farbsubsampling


lineare Transformation
 DCT
 Wavelets

Entropiekodierung Huffman arithmetisch

- keine feste Blockgröße für die Wavelet-Transformation
- gesamtes Bild, oder "Tiles" beliebiger Größe
- verlustfreie / -behaftete Kodierung (Integer/Float, zwei Wavelets)
- Wavelets kodieren Bild in verschiedener Auflösung
- daher weniger Neigung zu Blockartefakten
- Bildqualität nicht unbedingt besser als JPEG oder PNG
- nur bei sehr hoher Kompression

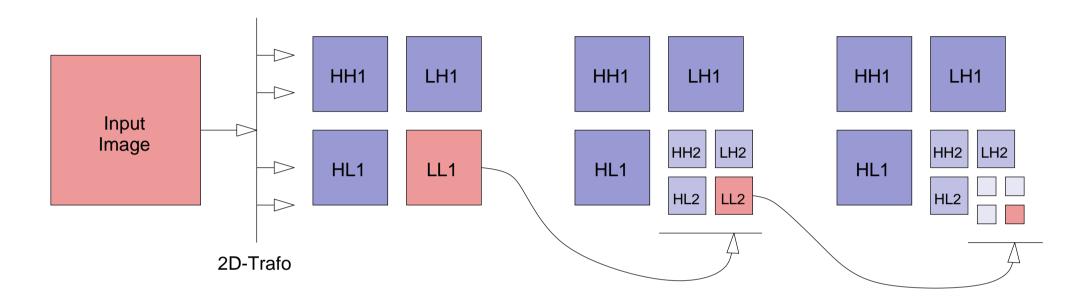
(Santa-Cruz et al. SPIE ADIP 23, 4446, 2000)

JPEG 2000: Prinzip

- Aufteilung in Bereiche ("tiles")
- reversible Farbtransformation
- 2D-Wavelet-Transformation
- Quantisierung
- Bitstream

(Speicherbedarf kleiner)

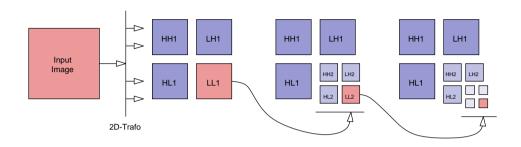
(RGB -> YCbCr)


(zwei Varianten)

("skalierbar")

(auch teilweise dekodierbar)

(jj2000.epfl.ch)


JPEG 2000: 2D-Wavelet-Transformation

- Hochpass- und Tiefpassfilterung des Eingangsbildes
- Eingangsbild wird in vier Teilbilder zerlegt (HH, LH, HL, LL)
- Operation wird auf dem Tiefpass-Teilbild wiederholt
- der erste Schritt liefert grobe Strukturen des Bildes
- spätere Schritte immer feinere Strukturen
- so viele Schritte kodieren / dekodieren wie nötig

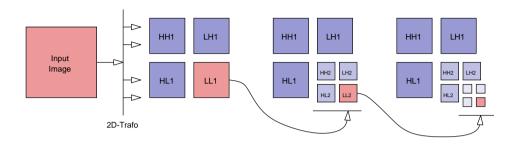
(jj2000.epfl.ch)

JPEG 2000: (5,3) Wavelet

$$H[n] = x[2n+1] + \left\lfloor \frac{1}{2} - \frac{1}{2} x[2n] - \frac{1}{2} x[2n+2] \right\rfloor$$

$$L[n] = x[2n] + \left\lfloor \frac{1}{2} + \frac{1}{4} H[n-1] + \frac{1}{4} H[n] \right\rfloor$$

Kodierung (Analyse)

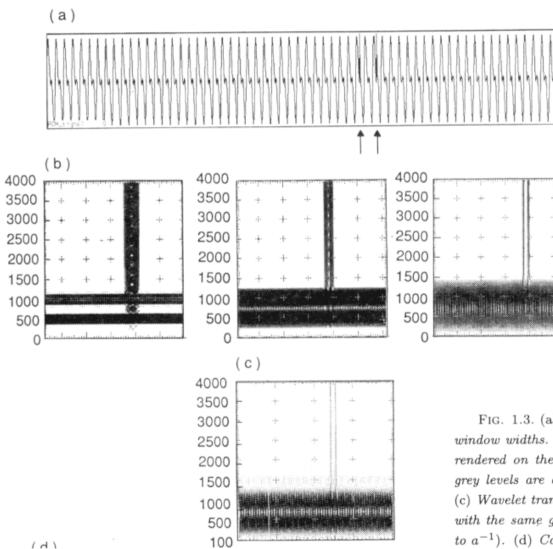

$$x[2n] = L[n] - \left\lfloor \frac{1}{2} + \frac{1}{4} H[n-1] + \frac{1}{4} H[n] \right\rfloor$$
$$x[2n+1] = H[n] - \left\lfloor \frac{1}{2} - \frac{1}{2} x[2n] - \frac{1}{2} x[2n+2] \right\rfloor$$

Dekodierung (Synthese)

verlustfrei durch sorgfältiges Auf/Abrunden

(A. Bilgin, M.W. Marcellin in 'lossless compression')

JPEG 2000: (9,7) Wavelet



$$egin{aligned} L_0(z) &= 0.602949018236 \, + \, 0.266864118443(z^1 \, + \, z^{-1}) \ &- 0.078223266529 \, (z^2 \, + \, z^{-2}) \ &- 0.016864118443 \, (z^3 \, + \, z^{-3}) \ &+ 0.026748757411 \, (z^4 \, + \, z^{-4}) \ H_0(z) &= 0.557543526229 \, - \, 0.295635881557 \, (z^1 \, + \, z^{-1}) \ &- 0.028771763114 \, (z^2 \, + \, z^{-2}) \ &+ \, 0.045635881557 \, (z^3 \, + \, z^{-3}) \end{aligned}$$

verlustbehaftet, Gleitkomma, gut für hohe Kompressionsraten

(jj2000.epfl.ch)

Wavelet- vs. Fourier-Analyse

Eingangssignal: zwei Sinussignale 500 Hz/1 KHz, plus zwei Störimpulse (Pfeile)

Fourieranalyse:

Fenstergröße 12.8 / 6.4 / 3.2 msec. abnehmende Frequenzauflösung zunehmende Zeitauflösung

FIG. 1.3. (a) The signal f(t). (b) Windowed Fourier transforms of f with three different window widths. These are so-called spectrograms: only $|T^{\text{win}}(f)|$ is plotted (the phase is not rendered on the graph), using grey levels (high values = black, zero = white, intermediate grey levels are assigned proportional to $\log |T^{\text{win}}(f)|$) in the t(abscissa), $\omega(ordinate)$ plane. (c) Wavelet transform of f. To make the comparison with (b) we have also plotted $|T^{\text{wav}}(f)|$, with the same grey level method, and a linear frequency axis (i.e., the ordinate corresponds to a^{-1}). (d) Comparison of the frequency resolution between the three spectrograms and the wavelet transform. I would like to thank Oded Ghitza for generating this figure.

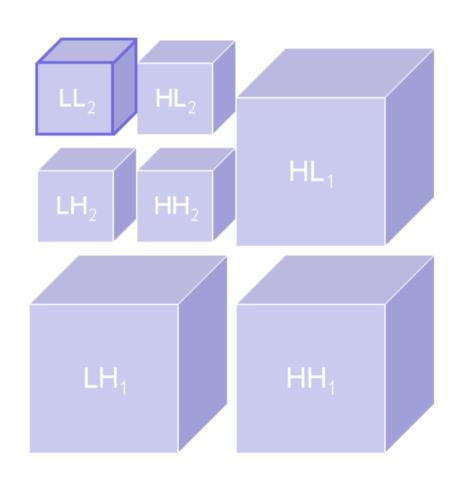
Wavelet-Analyse: gute Zeitauflösung, mittlere Frequenzauflösung

(Daubechies: Ten lectures on wavelets, 1.2)

JPEG 2000: Beispiel

JPEG 2000, 9819 bytes, 0.3bpp

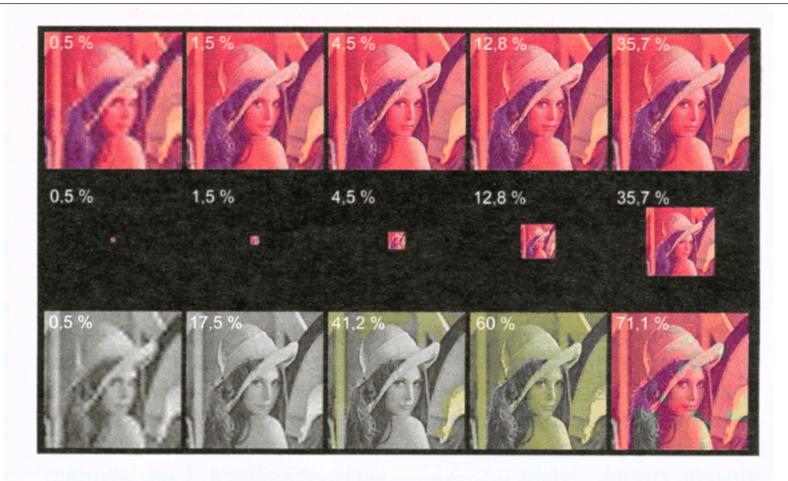
JPEG, 9643 bytes


JPEG, 11904 bytes

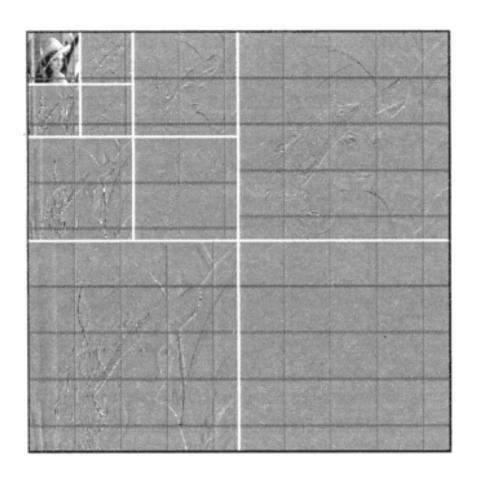
Vorführung des JJ2000 Encoders/Decoders

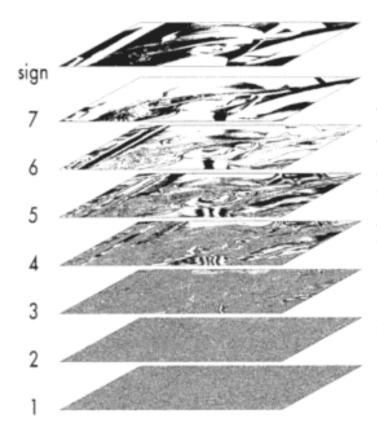
```
java JJ2KEncoder -i lena.ppm -o lena.j2k -rate 0.3 java JJ2KDecoder -i lena.j2k
```

(jj2000.epfl.ch)


JPEG 2000: Skalierung

- rekursive Anwendung der Wavelet-Transformation
- Tiefpaßanteile "oben links", Details "unten und rechts"


JPEG 2000: progressive Kodierung



Flexible Progression: Verwendet man nur einen Teil der komprimierten Daten (Prozentangabe), zeigt sich, in welcher Reihenfolge die Pakete in der Datei gespeichert sind. Hier zu sehen (von oben nach unten): qualitative Verbesserung, Steigerung der Auflösung und Komponentenprogression.

(c't 22/2001, S.187)

JPEG 2000: Bitplanes

Das Bild (links) liegt nach einer dreistufigen Wavelet-Transformation in vier Auflösungsstufen vor (gelb). Die Auflösungsstufen werden in gleich große Blöcke zerlegt (blau). Auf der rechten Seite sieht man die Bitebenen des linken oberen Blocks.

• weitere Skalierungsmöglichkeit: Übertragung der MSBs zuerst

(c't 22/2201, 186)