
Preprint for Springer Journal of Real-Time Image Processing
The final publication is available at link.springer.com

Roelof Berg · Lars König · Jan Rühaak · Ralph Lausen · Bernd Fischer d

Highly Efficient Image Registration for Embedded Systems
Using a Distributed Multicore DSP Architecture

Preprint of August 28th 2014

Abstract We present a complete approach to highly ef-
ficient image registration for embedded systems, covering
all steps from theory to practice. An optimization-based
image registration algorithm using a least-squares data
term is implemented on an embedded distributed multi-
core digital signal processor (DSP) architecture. All rel-
evant parts are optimized, ranging from mathematics,
algorithmics, and data transfer to hardware architecture
and electronic components.

The optimization for the rigid alignment of two-di-
mensional images is performed in a multilevel Gauss-
Newton minimization framework. We propose a reformu-
lation of the necessary derivative computations, which
eliminates all sparse matrix operations and allows for
parallel, memory-efficient computation. The pixelwise
parallellism forms an ideal starting point for our imple-
mentation on a multicore, multichip DSP architecture.

The reduction of data transfer to the particular DSP
chips is key for an efficient calculation. By determin-
ing worst cases for the subimages needed on each DSP,
we can substantially reduce data transfer and memory
requirements. This is accompanied by a sophisticated
padding mechanism that eliminates pipeline hazards and
speeds up the generation of the multilevel pyramid.

Finally, we present a reference hardware architecture
consisting of four TI C6678 DSPs with eight cores each.
We show that it is possible to register high-resolution
images within milliseconds on an embedded device. In

R. Berg
Berg Solutions, Lübeck, Germany
E-mail: rberg@berg-solutions.de

L. König · J. Rühaak · B. Fischer
Fraunhofer MEVIS, Lübeck, Germany
E-mail: lars.koenig@mevis.fraunhofer.de

J. Rühaak
E-mail: jan.ruehaak@mevis.fraunhofer.de

Prof. Dr. R. Lausen
DHBW Karlsruhe, Karlsruhe, Germany
E-mail: lausen@dhbw-karlsruhe.de

Prof. Dr. B. Fischer d

our example, we register two images with 4096x4096 pix-
els within 93 ms while offloading the CPU by a factor of
20 and requiring 3.12 times less electrical energy.

1 Introduction

A classical general definition of image registration is
given in [9]: “Image registration is the process of aligning
two or more images of the same scene taken at differ-
ent times, from different viewpoints and/or by different
sensors.” Image registration is applied wherever informa-
tion about the correspondence between several images is
necessary. There are many examples of its application
in different industries; in medical imaging, patient data
acquired by different sensors, such as PET, CT, or ul-
trasonic devices, and possibly at different times can be
combined in an enhanced overall image [2, 27]. In indus-
trial applications, registration can help detect wrongly
placed or incorrect assembly parts [32]. Furthermore, ap-
proaches to superresolution imaging rely on information
about image correspondence [17].

Figure 1 shows a simple example of an image regis-
tration. When the two images of an apple need to be
compared visually, a simple overlay of both images like in
Figure 1(c) does not reveal the differences between them
very clearly, because both apples are displaced from each
other. Image registration can be used to find a transfor-
mation that removes the displacement of the template
apple from the reference apple. By using this informa-
tion, an overlay can be created (as in Figure 1(d)) that
allows for a visual comparison of both apples for the hu-
man eye as well as for machine-vision algorithms.

The applications of image registration algorithms in-
clude a broad range of use cases in industrial and embed-
ded setups [32, 33, 24, 15]. Devices in these applications
are often restricted in space and power consumption, yet
performance requirements are often very high (e.g., for
driving assistance systems [10]) and demand specialized
hardware and software development. Only by optimizing

2

(a) reference
apple

(b) template
apple

(c) simple
overlay

(d) regis-
tered images

Fig. 1 Image registration explained: a simple overlay image
of two similar apples (c) does not reveal the differences be-
tween the two fruits. By image registration the displacement
between the two apples can be removed (d) and the differ-
ences between each other become clearly visible.

all areas involved can these high requirements be met and
efficient solutions be developed.

In this paper, we present such a holistic approach
to highly efficient image registration for embedded sys-
tems by describing the complete pipeline from theory
to practice. All parts are optimized, from mathemat-
ics, algorithmics, and data transfer to hardware architec-
ture and electronic components. We chose an established
image registration algorithm based on a least-squares
image intensity constancy assumption that performs a
rigid registration of two images using derivative-based
optimization. This algorithm was implemented on a dis-
tributed multicore digital signal processor (DSP) archi-
tecture, following the recent development of multicore
DSPs [19]. Whereas the presented approach is tailored
to two-dimensional images, the results can be directly
extended to three-dimensional volumes and also higher-
order distance measures [35, 21, 46].

The derivative calculations of the image registration
objective function, which are needed for the employed
Gauss-Newton optimization scheme, are reformulated to
allow an efficient and full per-pixel parallel computation.
This serves as an ideal base to utilize the computational
power of the multicore DSP architecture. Additionally,
an efficient way will be shown to organize and distribute
the control and data streams in the proposed distributed
computing environment. While significantly speeding up
the overall calculation, this setup also enables offloading
computations to the DSPs, leaving the CPU available for
other tasks.

The contribution of this paper is a complete approach
showing how optimization in all areas can result in a
system capable of high-speed image registration, which
is exemplified by using a high-performance, low-power
embedded implementation. The optimized areas include:

– elimination of unnecessary sparse matrix operations
(Chapter 3)

– design of efficient algorithm parallelization on two
levels of parallelization: multichip and multicore (Sec-
tions 3.3 and 4.1)

– reduction of the amount of relevant image data by
considering worst-case displacements (Section 4.2)

– elimination of processor pipeline hazards using image
padding (Section 4.3)

– combination of padding and multi-resolution image
generation (multilevel pyramid; Section 4.4)

– reference hardware architecture design tailored to the
algorithm by using a cluster of multicore DSP co-
processors that calculate independently on dedicated
RAM (Chapter 5).

These optimization techniques are versatile and not
restricted to the presented registration approach. The
optimizations are outlined for a specific amount of DSP
coprocessors on one particular bus system, but it is
straightforward to transfer the concept either to a system
with a different number of DSPs or another bus system.

2 Related work

Image registration is generally well studied, and many
different approaches have been developed on this sub-
ject [50, 3]. Many established state-of-the-art approaches
[29, 28] use derivative-based numerical optimization.
Among the variety of publications in this field, many
deal with mathematical methods, but only a few papers
deal with technical aspects focused on image registration
on resource-limited embedded computer devices.

However, to the best of our knowledge, there are no
approaches that use image registration with derivative-
based optimization on embedded systems. The higher
memory consumption and increased computational cost
associated with the derivative computations [29] might
cause this. Related research has implemented image
registration on FPGA-based [38, 5], DSP-based [49], and
SoC-based [7] hardware setups, but these approaches use
derivative-free optimization schemes that exhibit infe-
rior mathematical properties [31]. Our paper comple-
ments this research on image registration on embedded
platforms by showing that even image registration using
derivative-based optimization can be implemented effi-
ciently on current embedded systems.

To this end, the approach from [35] is extended by
adapting the computations to state-of-the-art embedded
processor technology. The benefits of this new approach,
which originally were not published with a focus on em-
bedded systems, are ideal for an embedded environment:
the approach results in the elimination of sparse matrix
calculations, minimizing CPU operations, and reduces
the amount of necessary RAM as well as the utilization
of the memory bus and processor caches. Moreover, the
approach is fully parallel to a per-pixel extent, which
helps parallelize the algorithm for distributed comput-
ing on independent calculation cores. It will be shown
that the speed of image registration on embedded sys-
tems can be raised to an extent far beyond those in [49],
for example.

3

3 Mathematical framework

The registration methodology used in this work is built
upon a sound mathematical foundation. Following the
ideas presented in [29], the registration task is formu-
lated as a continuous, yet finite-dimensional optimiza-
tion problem. Computing derivatives of the objective
function associated with the registration task allow effi-
cient Newton-type minimization methods. Also, the pre-
sented approach is based on the methods provided in
[29]. These, however, were designed for a powerful PC
environment and are therefore too memory-consuming
and demand too much computational resources for an
embedded setup.

This section shows how the internal structure of the
proposed registration method can be exploited to dras-
tically reduce computational costs, thus enabling the us-
age of sophisticated image registration methods on an
embedded device.

Section 3.1 introduces the required mathematical
framework to formulate the registration task. Section 3.2
is concerned with the objective function to be minimized
for registration and the computation of its derivatives. In
Section 3.3, the novel problem-specific formulation of the
mathematical model and its computational benefits are
presented.

3.1 Registration scheme

The goal of image registration is to establish a correspon-
dence between two images [28], a fixed reference image
R, and a deformable template image T . The images
are modeled as continuous functions R : R2 → R and
T : R2 → R with compact support in domains ΩR ⊆ R2

and ΩT ⊆ R2, respectively. The correspondence is ex-
pressed by an a-priori unknown function ϕ : ΩR → R2,
often called transformation, between R and T . In a vari-
ational setting, the function ϕ is characterized as a min-
imizer of an optimization problem.

The key idea is to describe a correspondence by the
notion of image distance [29]. Similar images, such as
those showing similar structures at the same positions,
are assumed to exhibit a high correspondence. The no-
tion of image similarity is formalized by a distance mea-
sure depending on the images T ,R and the transfor-
mation ϕ. Various choices focusing on different image
characteristics have been proposed, such as Mutual In-
formation [48, 25], Normalized Gradient Fields [14], or
Normalized Cross Correlation [12] for images acquired
from different devices or the classical Sum of Squared
Differences [3, 4].

The Sum of Squared Differences is a simple, yet pow-
erful distance measure. It yields good results, especially
in mono-modal registration settings with comparable in-
tensities [11, 18]. Moreover, the Sum of Squared Differ-
ences can be implemented in a very fast and efficient way,

(a) reference image (b) template image

2

3

4

x 10
9

S
S

D
 v

al
ue

−π/2 0 π/2

(c) SSD versus rotation
angle

(d) deformed template
image

Fig. 2 Distance measure computation of reference and ro-
tated template. A detailed description of the image data can
be found in Section 6.3. The template is rotated around the
image center and the respective SSD value is computed for
each step. The deformed template image of the optimal ro-
tation angle marked as a red dot in (c) is shown in (d). The
minimum value is obtained at a rotation angle of −5.6◦.

as will be shown later. In our approach, a discretized ver-
sion of the continuous functional

DSSD(w) =
1

2

∫
ΩR

(T (ϕw(x))−R(x))
2

dx (1)

is derived and then implemented on the embedded tar-
get.

The transformation ϕw : ΩR → R2 maps the ref-
erence image domain to the template domain depend-
ing on the transformation parameters w. It then allows
comparison of the fixed reference image R and the de-
formed template T (ϕw) := T ◦ ϕw. The distance mea-
sure D(T (ϕw),R) depends on the fixed R and the trans-
formed template T (ϕw). Thus, to find a plausible align-
ment of the images,

D(T (ϕw),R) =: D(w)
w−→ min, (2)

i.e., D has to be minimized by varying the transfor-
mation parameters. Here, ϕw with w = (α, t1, t2) al-
lows for rigid (i.e., rotation, translation) transforma-
tions that map a single point x = (x1, x2)> ∈ R2 with
ϕw : x 7→ Ax + t, t = (t1, t2), and A := A(α) is a two-
dimensional rotation matrix

A(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
,

4

where α denotes the rotation angle and t describes the
translation in x and y directions. The value of DSSD for
different rotations is illustrated in Figure 2. Note that
this framework has three degrees of freedom, which are
expressed by the parameters w. By choosing an arbitrary
transformation matrix A, this transformation model can
easily be extended to general affine-linear transforma-
tions, additionally allowing for scaling and shearing.

3.2 Function value and derivatives

To compute a solution to the registration problem (2),
the continuous formulation is first discretized. Hence,
the use of well-established methods from numerical opti-
mization is made possible. The domain ΩR is discretized
into M ×N equisized cells along x and y direction, with
the center points xi, i = 1, . . . ,MN . Using the midpoint
quadrature rule, a discretized version D of the distance
measure (1) can then be written as

DSSD(w) =
h̄

2

MN∑
i=1

(T (ϕw(xi))−R(xi))
2
, (3)

where h̄ = hxhy is the area of each cell.
The template image is typically only known at a dis-

crete set of data points, but the transformed coordinates
ϕw(xi) will generally not coincide with these points. To
compute T (ϕw(xi)), interpolation is used to evaluate the
discrete template image at arbitrary coordinates. Bilin-
ear interpolation with Dirichlet zero boundary conditions
is applied.

For discrete image data I ∈ RM×N given on an axis
parallel grid with unit spacing and a point x ∈ R2, let
(p1, p2), (q1, p2), (q1, q2), (p1, q2) denote the coordinates
of the four adjacent data points. To interpolate data I
at coordinates x = (x1, x2), the bilinear interpolation
function T (I,x) =: T (x) is given by

T (x) = (q2 − x2) ((q1 − x1)Ip1,p2 + (x1 − p1)Iq1,p2) (4)

+ (x2 − p2) ((q1 − x1)Iq1,q2 + (x1 − p1)Ip1,q2) .

As the goal is a fast convergence of the optimization
scheme, derivative-based optimization techniques featur-
ing super-linear convergence [31] are used. This implies
that the computation of distance-measure derivatives is
also needed, thus being more involved both from a math-
ematical and a software engineering point of view.

In our setting, the problem of image registration is
phrased as the minimization of a function DSSD : R3 →
R, i.e., a mapping from the parameter space (rotation,
translation) to one real-valued number representing the
image distance. To this end, the function DSSD is decom-
posed into a concatenation of vector-valued functions in-
volving all MN discrete sampling points at once. These

are defined as

y : R3 → R2MN , w 7→

(Ax1 + t)1
(Ax1 + t)2

...
(AxMN + t)1
(AxMN + t)2

 ∈ R2MN ,

with A, b as defined in Section 3.1, i.e., y maps the three
parameters w to a vector of MN deformed sampling
points. Additionally, using y = (y1, y2)>, the definition

T : R2MN → RMN ,

 y1
...

yMN

 7→
 T (y1)

...
T (yMN)

applies, which evaluates the image at all of the MN de-
formed points, thus creating a vector of the deformed
template image intensities. Setting Ri := R(xi), we con-
tinue by formulating

r : RMN → RMN ,

 T1
...

TMN

 7→
 T1 −R1

...
TMN −RMN

as a vector-valued residual function, and finally

ψ : RMN → R,

 r1
...

rMN

 7→ h̄

2

MN∑
i=1

r2i

as the sum of all squared residual elements. Hence, the
discrete objective function can be written as a concate-
nation of the functions

DSSD : R3 y−→ R2MN T−→ RMN r−→ RMN ψ−→ R.

The above formulation allows straightforward com-
putation of the analytical gradient using the chain rule
as

∇DSSD(w) =
∂ψ

∂r
[r(T (y(w)))] · ∂r

∂T
[T (y(w))] (5)

· ∂T
∂y

[y(w)] · ∂y
∂w

[w].

Having derived the analytical structure of the deriva-
tives on a coarse component-wise level, we continue by
describing the derivatives of all individual components.
The first two individual derivatives are given by

∂ψ

∂r
[r] = h̄(r1, . . . , rMN) and

∂r

∂T
[T] = IMN ,

with IMN ∈ RMN×MN as the identity matrix, i.e., the
derivative of the residual function r can be omitted from

5

the actual computations. For higher-order distance mea-
sures such as the Normalized Gradient Fields, the re-
sidual derivative turns out to be significantly more com-
plex, see e.g. [35] for an extensive analysis.

Following (4) and using the notation ∂i for the par-
tial derivative with respect to the i-th component, the
derivative of the template image at a point x = (x1, x2)
is given by

∂1T (x) = − ((q2 − x2)Ip1,p2 + (x2 − p2)Iq1,p2)

+ ((q2 − x2)Iq1,q2 + (x2 − p1)Ip1,q2) and

∂2T (x) = − ((q1 − x1)Ip1,p2 + (x1 − p1)Iq1,p2)

+ ((q1 − x1)Iq1,q2 + (x1 − p1)Ip1,q2) .

For the vector-valued evaluation function T , the Jaco-
bian is therefore given by

∂T

∂y
=

∂1T (y1) ∂2T (y1)
. . .

. . .
∂1T (yMN) ∂2T (yMN)

 ,

see also Figure 3. Finally, the derivative of the function y,
which maps the rigid parameters to a transformed grid,
can be written as

∂y

∂w
=

− sin(α)(x1)1 − cos(α)(x1)2 1 0
cos(α)(x1)1 − sin(α)(x1)2 0 1

...
...

...
− sin(α)(xMN)1 − cos(α)(xMN)2 1 0
cos(α)(xMN)1 − sin(α)(xMN)2 0 1

 ,

thus completing the analysis of the gradient components
from (5).

A quasi-Newton method is chosen as a tradeoff be-
tween fast convergence and fast calculation for the opti-
mization scheme. With this method, the exact Hessian is
replaced by a quadratic approximation. Because of the
least-squares structure of the distance measure DSSD the
so-called Gauss-Newton approximation [31, 6] was cho-
sen to avoid calculating second-order image derivatives,
which are highly sensitive to noise. This scheme has been
used in image registration frameworks with great success
[29, 47, 11]. Defining dr := ∂r

∂T [T (y(w))]· ∂T∂y [y(w)]· ∂y∂w [w],

the Gauss-Newton approximation H(w) of the Hessian
is given by

H(w) := h̄ dr>dr ≈ ∇2DSSD(w). (6)

To obtain a descent direction sk in each step k with
these components, the equation

H(wk)sk = −∇DSSD(wk)> (7)

is solved, and the current iterate wk is updated to
wk+1 = wk + τsk. To ensure a sufficient decrease of the
distance measure, the Armijo line search method [31] is
used to determine the parameter τ .

∂ψ
∂r︷ ︸︸ ︷ ∂T

∂y︷ ︸︸ ︷ ∂y
∂w︷ ︸︸ ︷

∇DSSD = (• • • • • •)

• •
• •
• •
• •
• •
• •

• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

Fig. 3 Schematic view of the sparse matrix structure in the
computation of ∇DSSD.

3.3 Problem specific derivative calculation

Implementing the straightforward matrix-based ap-
proach on a computer or an embedded system is compli-
cated, especially when focusing on fast execution time.
The most critical resource is the main memory of the
target platform. Both the amount of available memory
and the bus bandwidth are bottlenecks which must be
considered. The aforementioned methodology using ma-
trix calculations to obtain the gradient and the Hessian
would consume a lot of memory and bandwidth, even
if efficient algorithms for sparse matrix arithmetic were
used.

Fortunately, the sparse structure of the matrices dis-
cussed in Section 3.2 (see Figure 3) can be exploited
to drastically reduce computational costs and derive a
very efficient, problem-specific algorithm. Instead of as-
sembling the particular derivative components as single
matrices, as, for example, in [29, 34], we derive a closed-
form formula only involving the very few computations
required.

With the information about the sparse matrix struc-
ture and the corresponding values, the complete analyt-
ical gradient

∇DSSD =
(
∂αDSSD, ∂txDSSD, ∂tyDSSD

)

of the objective function associated with the registra-
tion task can now be formulated. Using (5) and setting
Tw(xi) := T (ϕw(xi)) and

ci := ∂1Tw(xi)(− sin(α)(xi)1 − cos(α)(xi)2)

+ ∂2Tw(xi)(cos(α)(xi)1 − sin(α)(xi)2)

6

yields the final result

∂αDSSD(w) = h̄

MN∑
i=1

(Tw(xi)−R(xi)) · ci (8)

∂txDSSD(w) = h̄

MN∑
i=1

(Tw(xi)−R(xi)) ∂1T (ϕw(xi))

∂tyDSSD(w) = h̄

MN∑
i=1

(Tw(xi)−R(xi)) ∂2T (ϕw(xi)).

Using the same approach, the approximation H of
the Hessian ∇2DSSD in (6) can be phrased as a sum of
rank-one matrices li

H(w) = h̄

MN∑
i=1

li, (9)

with

li :=

 c2i ci∂1Tw(xi) ci∂2Tw(xi)

ci∂1Tw(xi) (∂1Tw(xi))
2

∂1Tw(xi)∂2Tw(xi)

ci∂2Tw(xi) ∂1Tw(xi)∂2Tw(xi) (∂2Tw(xi))
2

depending only on the i-th pixel.

In addition to its simplicity, our formulation offers
a number of significant computational advantages over
traditional matrix-based description. First, there is no
need for storing large chunks of data for deformed tem-
plates or image derivatives, for example, as everything
needed can easily be computed on the fly. No sparse ma-
trix arithmetic is required. Second, each summand can
be computed independently, as there are no dependen-
cies between the terms. This allows direct parallelization
with up to pixelwise granularity, requiring only standard
reduction techniques to obtain the final result. Finally,
the closed formulation leads to a very compact and effi-
cient code.

Our matrix-free calculation scheme benefits from the
fact that the residual derivative ∂r

∂T is the identity for the
SSD distance measure. For more general distance mea-
sures, the approach is still viable, as long as the residual
value at a pixel i does not depend on too many other pix-
els, i.e., the residual matrix exhibits a reasonable spar-
sity. In the case of the Normalized Gradient Fields dis-
tance measure, the same approach has been successfully
applied to three-dimensional images [35] and has further
been extended to non-linear deformable registration [21].

The optimized mathematical reformulation forms the
backbone of our method. Only by eliminating all matrix-
related overhead and all parallelization obstacles we can
successfully bring the algorithm to the embedded target
device. The following section presents the extensions and
modifications to our method which allow us to harvest
the full computational power of contemporary high-end
DSP coprocessors.

4 Hardware-specific algorithm design

The matrix-free mathematical framework is an ideal
starting point for designing a distributed algorithm.
Therefore, the focus is on the use of an architecture of
several multicore DSPs connected to a main processor
as co-processors. DSPs are an attractive choice because
they are both integrated circuits optimized for algorith-
mic calculations and designed for a high energy efficiency
measured in FLOPs per Watt [36]. Furthermore, they of-
fer special capabilities such as VLIW (very long instruc-
tion word), SIMD (single instruction multiple data), or
special commands (e.g., for multiply-accumulate opera-
tions) [8, 20].

4.1 Distributed calculation

To effectuate the advantages of DSP coprocessors, it is
necessary to design a parallel algorithm for distributed
calculation. In particular, this applies to the computa-
tion of function value (3), Jacobian (8), and the Gauss-
Newton approximation of the Hessian (9). Hence, the
computations can be schematically described as

F (image) =

MN∑
i=1

f(xi)

with xi being a discretization of the reference image do-
main ΩR, see Section 3.2. These computations involve
many floating point operations. Compared to this com-
putational workload, the resource demand of the rest
of the algorithm – the Gauss-Newton update step (7)
– is negligible. Our approach utilizes the discrepancy
between the low computational demand of the Gauss-
Newton update step and the expensive operations for
iterating over pixel data. This is done by executing the
Gauss-Newton update steps on the main processor first
and then offloading the computationally expensive cal-
culation of function value, Jacobian, and Hessian to
the DSP coprocessors. Furthermore, only the function-
value computation is needed for the Armijo line search,
whereas the Gauss-Newton update also requires the Ja-
cobian and the Hessian approximation.

The offloaded calculations can be performed on dif-
ferent independent areas of the images for each DSP. The
reference image in Figure 4, for example, is divided into
four subareas Si enabling a distributed calculation

F (image) =

#DSPs∑
i=1

∑
j∈Si

f(xj)

with each DSP i being responsible for its particular sub-
area Si.

In this way, the central processor can control the
whole calculation. In the beginning, the central processor

7

Fig. 4 Dividing the reference image into equal-sized respon-
sibility areas for each DSP.

Fig. 5 Image distribution to the cores of one DSP. The sub-
area of R for which this particular DSP is responsible is
shown on the right. On the left, the corresponding template
image subarea Tp – which is a part of T – is depicted. Each
partial image is split up into eight horizontal slices for the
eight DSP cores.

transmits the image data to each DSP; afterwards it con-
trols the iterations of the Gauss-Newton scheme. When
function value, Jacobian, and/or Hessian are needed, the
main processor utilizes the DSPs as coprocessors with
each DSP responsible for one (and always the same)
particular subarea of the reference image. Furthermore,
the central processor collects the results of all DSPs and
combines them to a single result for the next iteration.
Because each of the n DSPs will operate on only 1/n of
the reference image’s data, a theoretical speedup of up
to n can be achieved for the offloaded operations.

When using a cluster of multicore DSPs, one further
step of parallelization has to be considered. Both the
number of DSP chips and the amount of calculation cores
inside each DSP chip contribute to the total result

F (image) =

#DSPs∑
i=1

#cores∑
k=1

∑
j∈Si,k

f(xj)

where Si,k is the subset for which core k of DSP i is
responsible. Therefore, a method has to be defined with
regard to how a particular DSP distributes the workload
to its calculation cores.

As our method is based on a per-pixel independent
formula, virtually any partitioning scheme can be taken.
For optimal cache usage, the image data can best be used
in a memory-aligned manner leading to a partitioning
into several horizontal slices, as Figure 5 shows. There,

an example of a DSP with eight calculation cores is given.
In this case, each calculation core will calculate 1/8 of the
partial result for which the DSP is responsible, which is,
again, an (up to) linear speedup according to the amount
of DSP cores.

The calculation result of each pixel is a scalar for the
function value, a vector for the Jacobian, and a matrix
for the Hessian.1 Therefore, each DSP calculation core
first sums up the per-pixel results of the particular slice
it is responsible for, then the DSP sums up the results
of its calculation cores, and finally, the main processor
sums up the results of each DSP to obtain the final and
combined result for all pixels.

4.2 Memory architecture

An important topic for a hardware-specific algorithm in
embedded computing is the memory layout. A parallel
memory architecture was chosen for the calculation on
several DSP coprocessors, as described above. The ad-
vantage is that each DSP has its own private RAM as-
signed. The bus bandwidth between the memory and
the DSPs therefore does not have to be shared or di-
vided. This is important because it is seldom the pro-
cessing power that is the bottleneck in modern systems
but rather the memory bandwidth [26], as the processor’s
instruction rate is significantly higher than the memory
throughput.

However, dedicated RAM has a major drawback. In a
naive approach, the image data has to be stored several
times, i.e., once in each DSP’s independent RAM. In this
case, not only the demand of total RAM space is n (n =
amount of DSPs) times higher, but the whole image data
has to be transferred n times from the main processor’s
RAM to the DSP’s RAM. To mitigate this shortcoming,
the image data was split up in such a way that each DSP
is responsible only for a smaller part of the total image
data.

Concerning the reference image, the situation is sim-
ple: If e.g. four DSPs are used, each DSP only needs to
access one quarter of the reference image (as depicted in
Figure 4) because each DSP only performs 25% of the
total calculation. This reduces the RAM demand for the
reference image on each particular DSP by 75%.

4.2.1 Worst-case displacement parameters

For the template image, the procedure is more difficult
because the relevant field of view moves and rotates
during the algorithm iterations. Therefore, the involved
image data is usually bigger than 25% (in case of four

1 The Jacobian is a derivative to the transformation param-
eters w and should not be confused with the image gradient
obtained e.g. by the Sobel operator. The same applies to the
(approximated) Hessian.

8

Fig. 6 Finding the dimensions of Tp.

DSPs, see the left part of Figure 5). Where no predic-
tions can be made with regard to the image’s positions
accessed on a particular DSP, the whole template image
has to be stored in each DSP’s RAM.

However, many embedded systems connected to a
physical system have limitations that lead to an ex-
pectable range of registration results. The registration
result will, for example, be limited by the size of the em-
bedded system’s image sensor. Furthermore, the space
available for an object’s displacement under investiga-
tion might be physically limited. The algorithm can uti-
lize this information to reduce the amount of necessary
image data for each DSP by considering a field-of-view
size that is likely not to be exceeded during all iterations.

This worst case with regard to field-of-view size can
be considered as the big, light blue square in the left
of Figure 5 denoted as Tp. The inner square is allowed
to shift and rotate within Tp during the calculation it-
erations, but the edges of the inner square should not
exceed the borders of Tp, as no image data is defined
outside Tp. To identify the dimensions of Tp, worst-case
displacement parameters wmax = (αmax, tmax) are esti-
mated, with |α| ≤ αmax and |t| ≤ tmax, and α being the
maximal rotation and tmax being the maximal length of
the translation t = (t1, t2), as defined in Chapter 3.

By identifying a wmax suiting the physical environ-
ment of the embedded system, the image part Tp of the
template image can be determined that has to be trans-
ferred to a particular DSP’s RAM. In order to avoid
overhead by more complex polygonal shapes, we only
consider axis-parallel, rectangular regions for Tp. Fortu-
nately, however, it is sufficient to only consider certain
parameter sets instead of sampling over all possible pa-
rameter combinations. These sets are described in the
following algorithm:

1. The angle αmax is added to the start angle α0. Then,
the subarea for the particular DSP is rotated around
the reference image center. Finally, all corner coordi-
nates of the rotated subarea are identified (large red
dots in Figure 6).

Fig. 7 Distribution of image parts to the DSPs.

2. The same operation, but with αmax being subtracted
from α0 (instead of being added to it).

3. If some of the absolute angles 45◦, 135◦, 225◦, or
315◦ are located within the range of [α0−αmax, α0 +
αmax], these angles are also used to identify corner
coordinates, as mentioned in 1.

4. The four outermost left, right, top, and bottom coor-
dinates are determined from the set of all coordinates
identified above (dots surrounded by circles in Figure
6).

5. tmax, the maximal length of the translation vector,
is added/subtracted to these four coordinates to de-
termine the outermost positions (circles around the
dots in Figure 6, lines in the circles pointing to the
outermost part of the circles in Figure 7).

This way, the outermost positions defining the bound-
aries of Tp are determined which can be reached by rotat-
ing and shifting by any admissible value. Figure 7 shows
an example of a partial template image Tp identified by
this algorithm. The intersection of the two squares de-
fines the area of the template image that has to be trans-
ferred to the RAM of DSP-1.

The area of Tp in the left upper corner defines the po-
sitions that might be accessed by the algorithm, but no
image data is available for this region. Typically, this case
is handled by assuming Dirichlet zero boundary condi-
tions [29]. For efficient data transfer, only the intersection
pointing to defined image data mentioned in the previ-
ous paragraph will be transferred. With regard to the
range of undefined data, only meta information defining
its size will be used during the image data transfer.

4.2.2 Clipping Armijo line search

We observed during the first step of Armijo line search,
which is a part of the Gauss-Newton optimization de-
scribed in Section 3.2, that wk+1 will easily exceed the
limitations given by wmax – even when the final regis-
tration result will be within the bounds of wmax. This
jeopardizes the aforementioned procedure of identifying
and transferring only partial image data as calculations
for the function value (3), and the Jacobian (8) would
need to access more image data than is available in Tp.

9

Our experiments showed that the line search param-
eter τ can be restricted in such a way that the obtained
parameters wk+1 = wk + τsk lie within the limits of
wmax. This even speeds up the Armijo line search itself
when function value calculations for implausible wk+1

are skipped. Furthermore, it can be ensured in this way
that wk+1 will not exceed the limitations given by wmax
during the calculation.

One limitation to this technique is, of course, that
images with a bigger displacement than allowed by wmax
will lead to an implausible registration result. Therefore,
it must be ensured that wmax is big enough for the given
physical machine setup.

4.3 Padding to prevent pipeline hazards

It is necessary for a super-efficient calculation to use the
processor’s ALUs (Arithmetic Logical Units) to their ut-
most extent. Especially during nested loops with every
pixel being accessed (

∑
x

∑
y f(x, y)), all available ALUs

must run with as little idle time as possible. A major fac-
tor for achieving this is to avoid hazards in the proces-
sor’s instruction pipeline that can occur when executing
a branch command.

A pipeline hazard is a phenomenon in pipelined pro-
cessors operating on several subsequent commands in dif-
ferent stages at the same time. In a three-stage pipeline,
for example, the most recent instruction will be fetched
while the instruction before is decoded, and the third in-
struction will be executed simultaneously. When the pro-
gram counter is moved to another position by a branch
command, the instruction pipeline has to be rebuilt. On
a DSP using VLIW technology (Very Long Instruction
Word), with several instructions being encoded into one
pipelined instruction word, a pipeline hazard leads to
even worse effects as more instructions are affected by
one single pipeline hazard.

These branch instructions that can lead to pipeline
hazards would normally be implemented in the given al-
gorithm when handling Dirichlet boundary conditions in
image interpolation. This means that a constant default
pixel value will be used when a coordinate points out-
side the known image. In a simple approach, the code
that fetches pixel values from the RAM will have a con-
ditional branch deciding on the basis of the coordinate
position whether the request for an image value is inside
the boundaries of defined image data or whether to use
the default value. Branch executions, however, lead to
pipeline hazards.

For a branch free – and therefore pipeline hazard
free – operation, the image data can be surrounded
by padding borders of defined image data that are big
enough to guarantee that each request to fetch an image
value will point to defined data. The padding borders
contain a copy of the constant default pixel value be-
ing used to implement the Dirichlet boundary condi-

Fig. 8 Transferring Tp to the padded destination buffer.

Fig. 9 Combining several padding borders.

tions on every coordinate. This way, the code inside the
nested image interpolation loops operates without any
branches, yielding a significant speedup as shown in Sec-
tion 7.3.

The extents of the necessary padding borders define
the amount of necessary padding bytes that are well
known from the described procedure of calculating a Tp
described in Section 4.2.1. In Figure 7, the padding areas
are shown in the left upper area. It becomes clear that,
when storing the image data row-wise, some bytes are
needed for the padding as a trailer to the image buffer
and some in between the rows of defined image data.

For a distributed calculation, the extent of the
padding borders has to be transferred to the DSP system
along with the relevant image data (which is an insignif-
icant overhead as it is no additional image data but just
a few size-values). With this information, the DSP sys-
tem can assemble a data buffer consisting of initialized
(usually zeroed) memory and then place the image data
to the right places inside the bigger buffer row by row,
as Figure 8 shows.

To save memory on the DSPs, the right and the left
borders of one image can be combined. This is espe-
cially useful when the wmax parameters are so wide that
padding borders appear not only at two but at all four
image edges. Additionally, padding becomes necessary
at all borders if only one DSP is used because in this
case, the combination of positive and negative shift tmax

(in wmax) will always lead to padding borders around

10

Fig. 10 Efficient multilevel pyramid generation for Tp with omitted padding areas.

the whole image. In Figure 9, four padding borders sur-
round the image when the extraction of Tp is finished
(left part of the figure), whereas an image on the DSP is
surrounded by only three borders (right part of the fig-
ure). Here, the biggest of the borders is taken and used
as the right border, and one additional row is added to
the top border in case the utmost upper left pixel is ac-
cessed (which would otherwise fail, as there is only a
right border).

4.4 Efficient multilevel pyramid generation

Our approach is based on a multilevel scheme [13], which
means that the image registration starts on a coarse
image at a low image resolution and then increases
the resolution during the algorithm execution in certain
steps up to the final full image size.

Therefore, it is necessary to access the image data
in several coarser versions. As the algorithm operates
down the pyramid (meaning that it accesses the coarsest
image at first), the original high-resolution image has to
be shrunk to the coarsest level at the beginning. As it is
computationally efficient to execute the operations that
shrink the image data as few times as possible, our imple-
mentation initially shrinks the image several times until
the coarsest size is reached and keeps all intermediate
images in the RAM. This is advantageous because the
intermediate steps will be needed later when the multi-
level scheme accesses image data on finer pyramid levels.

The data buffer for Rp and Tp must be big enough to
hold the image data of all multilevel pyramid instances
including the padding borders. On each coarser level of
the pyramid, four neighboring pixels are averaged (half
height and half width). Using this scheme, the total
amount of memory mtotal needed for the whole image
pyramid can be calculated by using the convergence of

the geometric series

mtotal =

∞∑
k=0

(
1

4

)k
·mo =

1

1− 1
4

·mo =
4

3
·mo

with the memory amount of the input image (with
padding)

mo = (iw + bl + br) · (ih + bt + bb)

and iw, ih being the image width/height, bl, br, bt and bb
the padding border dimensions (left, right, top, bottom).
The convergence value is used as a buffer size and will
therefore contain enough space for any number of pyra-
mid levels. In our experiments, however, the number of
pyramid levels that were actually used was determined
by the formula dlog2(iw/32))e because lower and higher
values resulted in slower calculation (with square images,
iw = ih).

The pyramid generation can be sped up to just a few
milliseconds execution time – as shown in Section 7.2 –
when the implementation accesses only pixels known to
contain relevant image information. Therefore, our im-
plementation preinitializes the whole image memory to
the default pixel value. When executed while the system
is idle (after the boot-up and after each calculation), this
can be done without negative effects on the calculation
speed. No time is wasted for setting the pixel values of
the padding borders during the image transfer from CPU
to DSP as well as during pyramid generation.

Figure 10 shows the image transfer and the pyramid
generation. Here, only the areas marked with the hori-
zontal lines are accessed row by row, as is obvious due
to the facts mentioned in the previous paragraph. The
other memory parts – being the padding borders intro-
duced in Section 4.3 – remain untouched. On a multicore
DSP, this operation can be parallelized by dividing the
image into slices. In this case, every calculation core pro-
cesses a set of subsequent lines.

11

Fig. 11 Reference hardware architecture.

5 Embedded systems architecture

After the mathematical and algorithmical approach has
been discussed, the implementation in an embedded sys-
tem will now be described. First, an abstract overview
of the reference hardware architecture is given. This is
followed by an outline of the experimental hard- and soft-
ware setups which will then be used for the analysis of
the proposed method’s consumption of computational
resources.

5.1 Reference hardware architecture

A main aspect of this paper is to show how image regis-
tration using derivative-based optimization can be per-
formed on an embedded system in a holistic approach.
This means that mathematical and algorithmical prob-
lems are covered and a feasible hardware architecture
will be developed. The algorithm presented above is tai-
lored to a system consisting of a central processor (or
microcontroller) and four DSP coprocessors with dedi-
cated RAM for each DSP. As mentioned, the results of
this paper can easily be extended to a different number
of DSP coprocessors.

The abstract reference architecture is depicted in Fig-
ure 11. A central processor (CPU or microcontroller) is
connected to four DSP coprocessors using a highspeed
bus system. This could be a bus system like PCIe, SRIO,
or Hyperlink. The central processor has its own system
bus and its RAM is dedicatedly connected. This means

that the DSP coprocessors cannot directly access the cen-
tral processor’s RAM, and vice versa. Furthermore, each
DSP has its own system bus connected to its own dedi-
cated RAM. The advantage of this architecture is that
the RAM bandwidth does not need to be shared between
several coprocessors.

Maximizing the available RAM bandwidth is crucial
because the DSPs access each image pixel of R and its
four counterparts in T once in every single offloaded cal-
culation step. This applies all the more so, as the RAM
for T is accessed in a semi-random order because of the
image rotation, which can lead to cache misses when
image resolutions are high.

5.2 Experimental hardware setups

To analyze the proposed methods, two experimental
hardware setups were built according to the reference
hardware architecture described in Section 5.1. We sub-
divide the mainboards of embedded systems into two ba-
sic categories:

– PC-like, COTS embedded boards: Commercial
Off-The-Shelf (COTS) mainboards based on conven-
tional PC technology for devices which have less
space, power, and/or cost restrictions. Fields of use
include POS/POI (Point of Sales / Information) ter-
minals or IPCs (Industrial PCs) for industrial au-
tomation. These systems are often based on standard
mainboards with Intel or AMD mainstream proces-
sors [22, 23].

– Fully customized embedded boards: systems
based on a customized circuit board tailored to meet
special restrictions for space, power, and/or cost. Ex-
amples are omnipresent, including cars, cellphones, or
portable devices. These mainboards are often based
on microcontrollers such as PowerPC or ARM, which
are power efficient and, in addition to the CPU, also
contain many peripherals on one single, cost-efficient,
easy-to-integrate chip (e.g. [40]).

ID Field of Use
Intel setup PC-like, COTS embedded boards
ARM setup Fully customized embedded boards

Table 1 Experimental hardware setups for two different cat-
egories of embedded system mainboards.

We built an experimental hardware setup for each
of the two system types: one based on conventional PC
technology and an Intel processor, which is a blueprint,
for example, for POS/POI/IPC systems. The other one,
reflecting a field of uses that need a custom circuit board
design, is driven by an ARM processor. Both systems
are described in detail below, while the identifiers ‘Intel

12

setup’ and ‘ARM setup’ of Table 1 are used to distinguish
between the two.

By using state-of-the-art electronic components that
combine high effectiveness, low material cost, and wide
availability for industrial mass products, the setups are
suited for experimental performance measurements giv-
ing results with a high practical benefit.

5.2.1 DSP

For both the Intel and the ARM setups, the TI model
C6678 was chosen as the DSP coprocessor. Being a su-
perscalar high performance DSP running eight cores on
each coprocessor with up to an 1.25 GHz clock rate, it
is currently one of the fastest mainstream DSPs for in-
dustrial applications. In total, one coprocessor can reach
a calculation speed of up to 160 billions of single preci-
sion floating point operations per second (FLOP). The
specification of the C6678 DSP as taken from [44, 42] is
summarized in Table 2.

Clock speed 1.25 GHz
Peak performance 320 GMAC / 160 GFLOP
Calculation cores 8
SIMD vector size 128 bit
Chip dimensions 24 mm × 24 mm
Power consumption <10 W

Table 2 The Texas Instruments C6678 DSP. (GMAC: bil-
lions of multiply accumulates per second, GFLOP: billions of
floating point operations per second.)

Programming these DSPs requires an individual sys-
tem software layer, similar to programming a microcon-
troller. Our system is based on the realtime operating
system SYS/BIOS [43] provided by the DSP vendor TI,
which allows the most control over the DSP’s hardware
features. The C6678 DSP, for example, provides four
cache levels with different memory speeds, and the DSP
software can explicitly control the cache location of each
memory block as well as the cache synchronisation.

5.3 Intel setup (PC-like, COTS embedded boards)

The Intel setup (Table 1) is based on an Intel Core i5 Ivy
Bridge 3570K as the main processor. This model has four
cores, fast PCIe and DDR3 connectivity [16]. The clock
speed is 3.4 to 3.8 GHz while the TDP (Thermal De-
sign Power) is 77W. Together with the DSP infrastruc-
ture power consumption of about 54W [1] and the power
consumption of the PC infrastructure, this is a setup
for high-performance devices with fewer constraints in
power consumption and device size.

Four C6678 DSPs were connected to the Intel setup
by utilizing the PCIe Gen2 adapter card DSPC-8681

Fig. 12 Experimental hardware setup ‘Intel setup’ reflecting
a PC-like, COTS embedded mainboard.

from Advantech. It offers eight PCIe lanes [1] and a theo-
retical maximum bandwidth of 8 ·5 GBit/s = 40 GBit/s.

Figure 12 shows the chip interconnections of the In-
tel setup consisting of the Core i5 CPU connected to
the PCIe adapter card. On the DSPC-8681, one 8x PCIe
connector is multiplexed by a PCIe lane switch to four
2x PCIe connections – one for each DSP. The main pro-
cessor and each DSP are equipped with dedicated DDR3
RAM. An FPGA – which is also part of the DSPC-8681
– controls the clocks and busses between the PCIe lane
switch and the DSP coprocessors.

Such a device cannot be compared to a ready-to-use
PCIe device for a personal computer that comes with a
full set of firmware, software, and drivers. It was neces-
sary to develop custom AMP (asymmetric multiprocess-
ing) firmware and DMA (direct memory access) commu-
nication between the CPU and DSPs.

5.4 ARM setup (fully customized embedded boards)

Readers engaged in low-power, small-space embedded
systems will be interested in the effects of the DSP co-
processors on a custom circuit board based on embedded
microcontrollers such as ARM or PowerPC, represented

13

Fig. 13 Experimental hardware setup ‘ARM setup’ reflect-
ing a fully customized embedded board. The experiments are
based on Ethernet and an additional prediction is calculated
on how a PCIe based custom circuit board would behave.

by the ARM setup. We are not aware of any off-the-shelf
circuit boards that utilize an ARM microcontroller or
SoC (System on Chip) being connected to four C6678
DSP coprocessors by a highspeed bus-system like PCIe,
which means that a new specialized PCB (printed cir-
cuit board) and/or SoC would have to be designed for a
measurement. Unfortunately, this is tremendously time
and cost intensive and was out of our research scope.
To present the effects of DSP-coprocessors to an ARM-
based custom design nonetheless, we built the ARM
setup by using readily available hardware evaluation
modules with Gigabit Ethernet capability. As shown in
Image 13, we chose an ARM Cortex A8 based TI Sitara
evaluation board with a 720 MHz single core processor
[41] and four TI C6678 evaluation boards [45].

5.4.1 Speed prediction for an ARM-PCIe based PCB

The ARM setup is based on Gigabit Ethernet, but in
real PCB development, a rather fast bus system can be
expected. Thus, we calculated a prediction of an ARM-
PCIe based custom circuit board’s speed, which may
have some degree of uncertainty, but will still be use-
ful for estimating the performance of such a setup.

Figure 14 (a) shows a simplified (fewer iterations)
execution flow of image registration between a fast main
processor and one PCIe-connected DSP. The time for a
complete image registration shall be Iw (Intel setup wall-
clock time). The CPU time, referring to the sum of time
spans where the CPU is not idle, shall be Ic, reflected
by the dark red bars above the dotted horizontal line.
The time spans painted in light blue below the horizon-
tal line refer to the operation times of the DSP and the
blue arrows reflect the time demand for data transmis-
sion. The sum of the latter two shall be Dw (distributed

(a) Fast CPU

(b) Slow CPU

Fig. 14 Difference in the execution times of an image regis-
tration on a fast (a) and a slow (b) CPU and one DSP. The
execution times on the DSP (lower blue bars) and for the
data transfer (blue arrows) are equal in both cases and inde-
pendent from the CPU speed.

calculation wallclock time). Then, a single threaded and
uninterrupted system follows the equation Iw = Ic+Dw.

Figure 14 (b) shows the impact of a slower main pro-
cessor. For the wallclock and CPU times, the letter A
(like ARM) shall be chosen instead of I: Aw and Ac. The
DMA-based PCIe transfers and the DSPs operate in-
dependently from the main processor’s operation speed.
Therefore,Dw is equal in both Figures, and there is again
an equation as above: Aw = Ac + Dw. The basis of our
prediction is now to calculate Aw by summing Ac mea-
sured on the Ethernet-based ARM setup and Dw mea-
sured on the Intel setup for which PCIe was available.

Our measurement software was written in a way that
makes an Ac value obtained by Ethernet similar to an
Ac value on PCIe hardware by using the same mem-
ory copy scheme to the kernel buffers. Our experiments
on the Intel setup confirmed that Ic is to some degree
comparable between PCIe and Ethernet. Provided that
a future PCB implementation also guarantees this for
Ac, the sum of Ac of the ARM setup and Dw of the In-
tel setup yields the predicted registration duration on an
ARM-PCIe-based PCB. This approach was experimen-
tally verified on the Intel setup, and the error between
the prediction and the verification measurement was in
the range of 3.1%-4.5%2, depending on the image size.

5.5 Embedded software for the experimental setup

To assess the computational performance of our method,
the same algorithm was implemented with and without
DSP coprocessor usage. This allows for a measurement of
the DSP coprocessors’ speedup as well as measurement of
the extent to which the main processor will be offloaded.

As outlined in Figure 15, two points in time have
to be defined at which a time difference will be taken
to measure the algorithm’s execution duration. The up-
per part of the figure shows the operation without DSP
coprocessors (from left to right). For the DSP-free imple-
mentation, the starting point in time will be the point af-

2 E.g. 4096x4096 px on 1 DSP: Ethernet measurement
1058ms, PCIe prediction 211ms, PCIe measurement 202ms.

14

Fig. 15 Time measurement.

ter the image data has been loaded/acquired (e.g., from
a sensor or the harddisk) and the Gauss-Newton opti-
mization is about to start. The stop point in time will
be the time when the Gauss-Newton optimization stops
and the registration result has been computed.

The lower half of Figure 15 shows the alternative ap-
proach using DSP coprocessors. Here, the transfer for the
image data to the DSPs’ dedicated memory also has to be
regarded as an overhead that belongs to the algorithm’s
execution time. Hence, the overall execution time here
consists of the calculation time plus the overhead time
for the data transfer between the main processor’s and
the DSP’s RAM.

To retain the best comparability between both ap-
proaches, we spent the same effort of code optimization
on both the DSP-free and the DSP-utilizing version. For
example, all versions use the same computation accuracy
(32 bit), compiler/linker optimizations (where possible),
and full-speed processor options (e.g. Intel AVX, ARM
NEON, SIMD, VLIW). The source code of the perfor-
mance relevant calculation parts is almost identical be-
tween the two versions. Furthermore, the same extent
of parallelization is used, i.e., a parallel multilevel pyra-
mid generation and a parallel calculation of the function
value, Jacobian, and Hessian on all available (DSP or
CPU) cores.

6 Experiments

Now that all aspects of the experimental setup have been
described from the mathematics and the algorithm up to
the embedded hardware and software, two kinds of ex-
periments can be defined. The first experiment is a pre-
parative examination to determine whether the mathe-
matical approach in Chapter 3 is feasible and beneficial.
This solely mathematical comparison can be executed
on a PC workstation. However, the final performance
measurement examining the effect of different hardware
setups was made on a realistic embedded software im-

plementation on the experimental hardware setups de-
scribed in Chapter 5.

6.1 Preparative experiments on a PC workstation

As a preparative experiment, two implementations are
compared to measure the advantage of our matrix-free
mathematical framework. The first implementation fol-
lows the traditional matrix-based approach from which
our method is derived, as described in [29]. The second
implementation makes use of the matrix-free mathemat-
ics described in Section 3.3. The execution speed of both
methods is compared to illustrate the speedup of our new
method.

Since we only implemented our new, matrix-free ap-
proach on the embedded hardware setup instead of the
less efficient, traditional matrix-based approach, this pre-
parative experiment was executed on a PC workstation.
We measured the combined execution times of the calcu-
lation of the function value (3), the Jacobian (8), and the
Gauss-Newton approximation of the Hessian (9), which
are the algorithm’s most expensive operations. These
times were measured for both matrix-based and matrix-
free calculation.

Both the matrix-based and matrix-free calculations
were implemented in C++, parallelized using Open-MP
[39], and optimized individually and carefully to generate
an objective and a comparable measurement. For the
traditional implementation, sparse matrices had to be
used because the amount of RAM available on a typical
PC workstation would otherwise have been exceeded. In
[29], for example, the biggest Jacobian has a dimension
of mn · 2mn (m=image width, n=image height) which
would consume 512 Terabytes of memory for a 4096x4096
pixel image if not implemented as a sparse matrix.

We implemented this experiment in a minimalistic
way without any of our other algorithmic improvements
(for instance, the padding borders introduced in Section
4.3). It was thus possible to emphasize the sole speedup

15

of the matrix-free calculation which might also be rele-
vant for applications outside the field of embedded com-
puting.

6.2 Computational experiments on embedded hardware

In addition to the preparative experiment described
above, our main experiments were executed on real em-
bedded hardware setups as introduced in Chapter 5. On
each particular hardware setup, one measurement series
was made by solving several image registration problems
multiple times and measuring two values in each run.
One value is the calculation time needed to solve a partic-
ular registration problem, the wallclock time. The other
value is the utilization of the main processor during this
time, the CPU time.

ID CPU DSP DSP Bus
cores chips cores

Intel-0 4 0 0 -
Intel-1 4 1 8 PCIe
Intel-4 4 4 32 PCIe
Arm-0 1 0 0 -
Arm-1 1 1 8 Eth

Table 3 Overview of all embedded hardware setups for our
experiments. (Intel-1 had 4 physical DSPs available and only
1 DSP was used during the calculation.)

Table 3 presents an overview of all experimental hard-
ware setups. On the Intel setup introduced in Section 5.3
reflecting PC-like, COTS embedded boards, three series
of measurements were examined. The first (Intel-0) was
calculated locally on the main processor without utilizing
any DSP coprocessors, the other two series were calcu-
lated with one (Intel-1) and with four (Intel-4) DSPs.

As for the the ARM setup in Section 5.4, we found
that four DSPs provide no advantage over one DSP: the
ARM processor is so slow that the overhead for the image
distribution to four DSPs costs more CPU time than
can be compensated by the faster calculation on four
DSPs instead of one. This effect is independent from the
transport layer (Ethernet, PCIe), as it is caused by the
CPU time Ac and not by the distributed calculation time
Dw. Therefore, we show only the measurements made
with one DSP (Arm-1) on the ARM setup.

In addition to the calculation speed, we also measure
and compare the power consumption between the Intel
setup and the ARM setup measured by a phase shift
compensated power meter.

6.3 Example images

The mathematical framework presented here performs
an image registration without any image recognition and

(a) reference image (b) template image

Fig. 16 Subsequent histological slices of cancer tissue used
as example images for an image registration.

without any landmarks. The registration algorithm will
operate solely by providing a reference and a template
image. To show its effectiveness, a challenging registra-
tion problem taken from [30] as shown in Figure 16 is
used. The task is the registration of two subsequent his-
tological slices of a biological cancer tissue. To produce
these images, a series of thin slices of cancer tissue is dig-
itized one by one using a microscope. One particular slice
might be displaced (by means of shift and rotation) to its
predecessor because a human moves the slice from a mi-
crotom slicing device to the microscope’s object plate.
By using image registration several of these slices can
be combined to a 3D representation of the cancer tis-
sue when the shift and rotation between the slices are
digitally readjusted [37].

The difficulty of this registration problem is the arbi-
trary and unpredictable structure of the biological input
data. The following chapter will focus on the calcula-
tion of the necessary shift and rotation to transform the
template image shown in Figure 16 to the best possible
overlay with the reference image.

For each experimental hardware setup listed in Table
3, a measurement series is made that covers the following
image sizes:

– 512x512 pixel
– 1024x1024 pixel
– 2048x2048 pixel
– 4096x4096 pixel

7 Results and discussion

All experiments provided an adequate registration result
in terms of accuracy. To demonstrate the level of accu-
racy achieved by our method in Figure 17, the difference
images of the registration problem introduced in Figure
16 are shown. Zero difference is presented in gray, which
means that the lighter or darker a pixel is, the more dif-
ference exists by comparing R and T at this coordinate.
Figure 17(a) shows the differences between R and T be-
fore the image registration. In Figure 17(b), the trans-
formed template image is compared to R, which differs

16

(a) before registration (b) after registration

Fig. 17 Difference images between the reference image of
Figure 16 and the original (a) as well as the transformed (b)
template image. Image registration eliminates the differences
caused by the displacement and emphasizes the inherent in-
equalities.

significantly less. Only the inherent inequalities between
R and T are left, while the differences related to the
displacement between the images are eliminated.

Because the registration result is adequate, the exe-
cution times for the calculations are the most interesting
figures, and these will be the focus of the rest of this
chapter.

7.1 Speedup of the mathematical approach

Table 4 shows the speedup of our mathematical approach
identified by the preparative experiment introduced in
the beginning of Section 6.1. The table shows the exe-
cution time of function value, gradient, and Hessian com-
putation together. All times are measured with the tra-
ditional matrix-based approach our method is derived
from as well as with our new approach. As explained
in Section 6.1, this preparative measurement took place
on a PC workstation and focused solely on the speedup
given by our matrix-free approach presented in Section
3.3, without considering further improvements.

Image Size Tradition. New Speedup
Approach Approach Factor

512x512 0.06772s 0.00461s 14.69
1024x1024 0.26068s 0.01534s 16.99
2048x2048 1.09102s 0.05921s 18.43
4096x4096 4.32099s 0.23972s 18.03

Table 4 Execution time and speedup between the tradi-
tional matrix-based and our new matrix-free approach for
different image sizes calculated on a Linux workstation with
Intel Core i7-2600 CPU (3.40GHz) and 16GB of RAM.

Our matrix-free approach produced a significant
speedup, which means it was several times faster than
the traditional sparse-matrix based equivalent. In larger
images, the system overhead became less important and
the speedup of the matrix-free approach increased.

This gives clear evidence of the superiority of the
matrix-free approach and an embedded implementation
will undoubtedly benefit from it as well. Additionally,
this paper proposes several improvements to algorithms
and hardware. Because the speedup of these improve-
ments is related to the complex interaction and architec-
ture of embedded hardware parts (e.g., processor caches),
we did not simulate this on a PC workstation. We mea-
sured the benefits directly on target hardware compara-
ble to state-of-the-art embedded systems.

7.2 Effectiveness of the memory architecture

As there are many advancements involved in our setup,
the particular impact of each single advancement will
not be analyzed here. For a selection of our methods,
however, detailed values regarding speed and/or memory
will be given before the overall performance of a complete
image registration is discussed.

One important element of our approach is the gener-
ation of the multilevel pyramid as described in Section
4.4. For both images of Figure 16 (Rp and Tp) on one
particular DSP of the hardware setup Intel-4 we mea-
sured a time consumption ranging from 1.28 ms for a
512x512 pixel image to 25.23 ms for 4096x4096 pixels.
Table 5 gives examples of the necessary image memory
for T and R (including padding and multilevel pyramid)
when wmax is assumed to allow ±10◦ rotation and ±10%
translation.

Image Size 4 DSP 1 DSP
512x512 0.34 MB 0.87 MB
1024x1024 1.34 MB 3.48 MB
2048x2048 5.35 MB 13.90 MB
4096x4096 21.37 MB 55.55 MB

Table 5 Total memory consumption per DSP for the sum
of both multilevel pyramids of R and T (for a 1 DSP and a
4 DSP setup) in MByte for different image sizes.

The column for the 4 DSP setup refers to a signifi-
cantly smaller memory amount than the column for the
1 DSP setup. This is caused by reducing the image data
for a particular DSP, as shown in Section 4.2. Without
this technique, the 4 DSP column would be equal to the
1 DSP column. As can be seen, our method operates
with an efficient memory usage, which – depending on
the image size – even allows using the DSP’s internal
memory (e.g., 4 MB on the C6678 [44]) without needing
additional DDR3 chips.

7.3 Speedup through padding

In Section 4.3, we introduced padding to prevent pipeline
hazards. Although this method increases the complexity

17

of the software and consumes memory, outstanding per-
formance benefits can be obtained. For 4096x4096 pixels,
we measured a speedup factor of 6.32 solely for the func-
tion value calculation and 4.84 for the combined calcula-
tion of the function value, the Jacobian, and the Hessian
on the Intel-1 setup, where preventing pipeline hazards
can be observed on a single DSP without dividing the
image into parts. These measurements were taken on
the finest pyramid level and again, wmax was assumed
to allow ±10◦ rotation and ±10% translation.

7.4 Speed comparison between the experimental setups

The most interesting measurement is the calculation
speed for solving a complete image registration prob-
lem using the images shown in Figure 16. The execution
times in ms measured in the experimental setups are
shown in Table 6.

ID 512px 1024px 2048px 4096px
Intel-0 7.2 22.3 49.2 215.5
Intel-1 10.7 28.2 66.4 202.0
Intel-4 12.3 22.6 33.4 92.7
Arm-0 973.3 3,194.5 17,204.4 33,549.3
Arm-1 90.2 211.5 448.6 1,323.3

Table 6 Calculation duration in milliseconds for a complete
image registration (according to Figure 15) for different image
sizes on different hardware. The column ID refers to the ex-
periments listed in Table 3.

Using our approach, a full image registration can be
calculated in a few milliseconds and, depending on the
image size, even the speed of a video (25 frames per sec-
ond, 40 ms per frame) can be reached for realtime imag-
ing. The bigger the images are, the more advantageous
becomes the use of DSPs. The last two lines (Arm-1)
show a remarkable speed increase on the ARM setup.
The slow ARM processor takes 33.5 seconds to register
a 4096x4096 image, whereas a DSP-equipped calculation
finishes in 1.3s.

The Intel-0 row shows that the method and math-
ematical framework lead to a registration result in the
range of milliseconds, even for hardware setups without
any DSP utilization. Therefore, our method is also fea-
sible for systems that cannot be equipped with DSP co-
processors.

7.5 Speedup comparison between systems with and
without DSP

A more detailed analysis of the values in Table 6 can be
obtained by investigating the DSPs’ speedup by calculat-
ing the quotient of the execution time on a system with
and without DSP usage, which is listed in Table 7. A

value of 2.33 in the row for the ID Intel−0
Intel−4 , for example,

indicates that the DSP utilized system Intel-4 calculates
2.33 times faster than Intel-0.

ID 512px 1024px 2048px 4096px
Intel−0
Intel−1 0.67 0.79 0.74 1.07
Intel−0
Intel−4 0.58 0.99 1.48 2.33
Arm−0
Arm−1 10.79 15.10 38.35 25.35

Table 7 Speedup factors by the use of DSP coprocessors
(wallclock time).

Table cells with a value lower than 1.0 correspond to
a slowdown of the DSP-based approach on systems that
are solely executing the image registration and would
otherwise be idle. This, however, does not mean that
there is no benefit at all, as shown in Section 7.6, be-
cause all of our DSP-based approaches still consume sig-
nificantly less CPU time, even if more wallclock time is
used.

As expected, the highest speedup can be seen on
the Arm-1 system because the ARM microcontroller has
only one single 720 MHz calculation core, which makes
a great difference to the multicore DSPs’ speed. On the
Intel-4, a wallclock speedup can only be seen at 2048 and
4096 pixel sizes with speedup of 1.48 and 2.33, respec-
tively. On the Intel-1 system, there is no or almost no
wallclock speedup. There is, however, still an advantage
of reduced CPU time, as shown below.

The speedup tends to be higher when the images are
bigger. This can be explained by the relative image trans-
mission overhead that is higher for small image sizes. The
bigger the images are, the more the DSPs can account
for the overall calculation performance and the less im-
pact the initial image transmission has. A rule of thumb
is that the bigger the image sizes are, the more advanta-
geous the utilization of DSPs is.

7.6 Processor utilization

An embedded system’s main processor or microcontroller
is usually designed to cause as little procurement costs
as possible for the device’s operation requirements. It is
often responsible for ongoing tasks like continuous read-
out of sensor data, reacting to real-world stimuli, con-
trolling actuators, and performing data transfers. These
tasks can easily consume a high amount of processing
power. When calculations are offloaded to DSPs, the
main processor remains simultaneously available for the
tasks mentioned above.

Offloading tasks to coprocessors becomes especially
attractive for embedded systems that operate the main
processor constantly near the performance limit. In this
case, the offload ratio (quotient of CPU times) can be

18

more important than the speedup (quotient of the wall-
clock times). As previously mentioned, a coprocessor giv-
ing a negative speedup can still be beneficial when the
offload ratio is positive.

ID 512px 1024px 2048px 4096px
Intel-0 31.2 105.5 202.1 851.9
Intel-1 1.1 1.8 4.3 10.6
Intel-4 3.3 7.4 13.5 42.6
Arm-0 980.0 3,190.0 17,180.0 33,510.0
Arm-1 20.0 50.0 140.0 530.0

Table 8 CPU time of the main CPU in milliseconds for a
complete image registration (according to Figure 15) for dif-
ferent image sizes on different hardware. The column ID refers
to the experiments listed in Table 3.

Table 8 shows the amount of CPU time used for the
image registration. It is a sum of the time periods in
which each core was busy with registration processing.
In the case of a multicore system, the CPU time can be
higher than the wallclock time. A remarkable decrease
in processor utilization can be seen on all setups when
DSP coprocessors are used.

A tradeoff between CPU time and wallclock time
shows up in the Intel setup. The Intel-4 setup in Ta-
ble 6 was clearly superior to the Intel-1 setup in terms
of wallclock time. However, the Intel-1 setup in Table 8
exhibits superior CPU time.

ID 512px 1024px 2048px 4096px
Intel−0
Intel−1 27.9 59.6 47.0 80.3
Intel−0
Intel−4 9.5 14.3 15.0 20.0
Arm−0
Arm−1 49.0 63.8 122.7 63.2

Table 9 Offload factors by the use of DSP coprocessors.

In Table 9, the offload factor is shown, which is calcu-
lated the same way the speedup is calculated, but using
the CPU times instead of the wallclock times. The rela-
tive savings of CPU resources are very high. This can
be explained by the fact that the main processor is only
busy with the image distribution to the DSPs in the be-
ginning, and most of the mathematical calculation work
is done in the DSPs, which do not affect the CPU. In this
case, they neither consume processor cycles nor RAM
bandwidth because our approach is based on dedicated
RAM for each DSP.

This way, a cost-effective and energy efficient main
processor can be chosen that has enough free calcula-
tion resources available for other tasks during the image
registration.

7.7 Prediction for a custom circuit board

As clarified in Section 5.4, it was out of our research
scope to design and manufacture a custom circuit board
connecting the ARM and DSP chips on one single PCB
with a highspeed bus. Therefore, we do not present mea-
surement values for such a circuit board. In Section 5.4.1,
however, we proposed and verified a measurement and
calculation method that predicts how our Ethernet based
ARM setup would behave if Ethernet was replaced by
PCIe.

Value 512px 1024px 2048px 4096px
Wallclock 29.6ms 76.4ms 202.1ms 721.4ms
Speedup 32.86 41.79 85.13 46.50

Table 10 Prediction of an ARM and PCIe based custom
circuit board. The values were not directly measured, but
instead calculated using the formula in Section 5.4.1.

Table 10 shows the results of this calculation. The
nature of a prediction is to have some degree of uncer-
tainty. In our verification of the prediction method in
Section 5.4.1, we measured an error between 3.1%-4.5%;
other setups might have a higher or lower error. A pre-
diction is only made for the wallclock time because the
CPU time is not affected as much by changing the trans-
port layer and the values in the Arm-1 row of the Tables
8, and 9 can be taken as an orientation.

7.8 Power consumption

Table 11 lists the average electrical power consumption
of the measurement setups during a consecutive series
of image registrations with an image size of 4096x4096
pixels and the energy necessary for one particular image
registration. The consumption of an Intel-1 setup could
not be measured because single DSP chips could not be
deactivated on the DSPC8681.

Setup Power Energy
Intel-0 103.6 W 20.33 Ws
Intel-4 70.2 W 6.51 Ws
Arm-0 1.3 W 43.61 Ws
Arm-1 21.9 W 28.98 Ws

Table 11 Power consumption of the experimental setups
and energy consumption of one particular image registration
(4096x4096 pixel, no display connected).

In the first column, it can be seen that the overall
device power consumption is lowered on the Intel setup
when DSP coprocessors are in use. The higher energy
demand of the DSP processors is obviously overcom-
pensated by the savings of the lower CPU utilization.

19

Since Intel-4 additionally calculates 2.33 times faster
than Intel-0, which amplifies the effect, the energy sav-
ings for one particular image registration become quite
attractive: 3.12 times less energy.

The power consumption of the ARM setup is signifi-
cantly increased by the additional DSP evaluation mod-
ule, but because of the enhanced calculation speed of
factor 25.35, we can see in the second column of Table
11 that one particular image registration still consumes
less energy with DSPs than without. The higher power
demand is overcompensated by the higher calculation
speed. On a real PCB, this effect can be assumed to be
even higher because the registration would be faster (as
shown in Section 7.7) and the overhead of adding only
a sole DSP chip would be lower than by adding a whole
experimental evaluation board.

7.9 Conclusion

Our work shows that image registration using derivative
based optimization is possible on low cost, low power and
low space embedded systems at very high speed, which
is even fast enough for real-time imaging applications
needing response times within a couple of milliseconds
(depending on the image size).

To achieve this, this work derived special mathemat-
ical and algorithmical approaches optimized for state-of-
the-art embedded hardware based on multicore proces-
sors. By means of efficient algorithm parallelization as
well as by reducing the utilization of memory and bus
systems (PCIe, RAM), these concepts provide tremen-
dous speedup compared to a classical approach. By us-
ing additional DSP coprocessors with dedicated RAM,
an even higher speedup could be observed, while the cal-
culations were also being offloaded from the main pro-
cessor. Thus, an energy-efficient and cost-effective main
processor can operate the embedded system’s sensors,
actuators, and realtime tasks without conflicting with
the high-speed image registration.

The mathematic and algorithmic principles are
generic and can easily be applied to different numbers of
DSPs as well as to different mathematical components,
such as another distance measure or a higher spatial di-
mension. Therefore, our method is versatile for use in
many registration problems in various fields.

Our unique combination of super-efficient software
on super-fast, yet cost-effective DSP coprocessors makes
image registration using derivative-based optimization
available to applications that depend on small, cost-
effective, and energy-efficient embedded computers.

Acknowledgements The software created during this work
is open-source and can be accessed at http://github.com/
RoelofBerg/fimreg.

In deep sorrow, we commemorate Prof. Dr. rer. nat. Bernd
Fischer who passed away during the creation of this paper.
Our thoughts are with his family.

References

1. Advantech (2013) DSPC-8681 – half-length PCI
express card with 4 TMS320C6678 DSPs. URL
http://downloadt.advantech.com/ProductFile/
PIS/DSPC-8681/Product%20-%20Datasheet/
DSPC-8681_DS%2803.31.14%2920140519134025.
pdf

2. Alavi A, et al (2007) Is PET-CT the only option?
European Journal of Nuclear Medicine and Molecu-
lar Imaging 34:819–821

3. Brown LG (1992) A survey of image registration
techniques. ACM Comput Surv 24(4):325–376

4. Capek K (1999) Optimisation strategies applied to
global similarity based image registration methods.
In: International Conferences in Central Europe on
Computer Graphics, Visualization and Computer
Vision (WSCG), vol 2, pp 369–374

5. Castro-Pareja CR, Jagadeesh JM, Shekhar R (2003)
FAIR: a hardware architecture for real-time 3-
D image registration. Information Technology in
Biomedicine, IEEE Transactions on 7(4):426–434

6. Dennis JJE, Schnabel RB (1983) Numerical Meth-
ods for Unconstrained Optimization and Nonlinear
Equations. SIAM

7. Evans JR, Arslan T (2002) The implementation of
an evolvable hardware system for real time image
registration on a system-on-chip platform. In: Evolv-
able Hardware, 2002. Proceedings. NASA/DoD Con-
ference on, IEEE, pp 142–146

8. Eyre J, Bier J (2000) The evolution of DSP proces-
sors. IEEE Signal Processing Magazine 17(2):43–51

9. Fischer B, Modersitzki J (2008) Ill-posed medicine –
an introduction to image registration. Inverse Prob-
lems 24(3):034,008

10. Geronimo D, Lopez AM, Sappa AD, Graf T (2010)
Survey of pedestrian detection for advanced driver
assistance systems. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 32(7):1239–1258

11. Gigengack F, Ruthotto L, Burger M, Wolters CH,
Jiang X, Schafers KP (2012) Motion correction in
dual gated cardiac PET using mass-preserving image
registration. Medical Imaging, IEEE Transactions on
31(3):698–712

12. Gonzalez RC, Woods RE (1992) Digital Image Pro-
cessing, vol 2. Addison-Wesley

13. Haber E, Modersitzki J (2006) A multilevel method
for image registration. SIAM Journal on Scientific
Computing 27(5):1594–1607

14. Haber E, Modersitzki J (2007) Intensity gradient
based registration and fusion of multi-modal images.
Methods of Information in Medicine 46:292–9

http://github.com/RoelofBerg/fimreg
http://github.com/RoelofBerg/fimreg
http://downloadt.advantech.com/ProductFile/PIS/DSPC-8681/Product%20-%20Datasheet/DSPC-8681_DS%2803.31.14%2920140519134025.pdf
http://downloadt.advantech.com/ProductFile/PIS/DSPC-8681/Product%20-%20Datasheet/DSPC-8681_DS%2803.31.14%2920140519134025.pdf
http://downloadt.advantech.com/ProductFile/PIS/DSPC-8681/Product%20-%20Datasheet/DSPC-8681_DS%2803.31.14%2920140519134025.pdf
http://downloadt.advantech.com/ProductFile/PIS/DSPC-8681/Product%20-%20Datasheet/DSPC-8681_DS%2803.31.14%2920140519134025.pdf

20

15. Hossny M, Nahavandi S, Creighton D, Bhatti A
(2010) Towards autonomous image fusion. In: Con-
trol Automation Robotics & Vision (ICARCV), 2010
11th International Conference on, IEEE, pp 1748–
1754

16. Intel Corporation (2013) Desktop 3rd generation
Intel Core processor family, desktop Intel Pen-
tium processor family, and desktop Intel Celeron
processor family. URL www.intel.com/content/
dam/www/public/us/en/documents/datasheets/
3rd-gen-core-desktop-vol-1-datasheet.pdf

17. Irani M, Peleg S (1991) Improving resolution by
image registration. CVGIP: Graphical models and
image processing 53(3):231–239

18. Kabus S, Lorenz C (2010) Fast elastic image regis-
tration. Grand Challenges in Medical Image Analysis
pp 81–89

19. Karam LJ, AlKamal I, Gatherer A, Frantz GA, An-
derson DV, Evans BL (2009) Trends in multicore
DSP platforms. Signal Processing Magazine, IEEE
26(6):38–49

20. Kessler CW (2013) Compiling for VLIW DSPs. In:
Handbook of Signal Processing Systems, Springer,
pp 1177–1214

21. König L, Rühaak J (2014) A fast and accurate paral-
lel algorithm for non-linear image registration using
normalized gradient fields. In: Biomedical Imaging
(ISBI), 2014 IEEE 11th International Symposium
on, IEEE, pp 580–583

22. Kontron AG (2009) Infotainment POS/POI.
URL http://www.kontron.com/resources/
collateral/industry_brochures/pos_poi_2010_
global_single.pdf

23. Kontron AG (2013) Embedded Computer So-
lutions for Advanced Automation Control.
URL http://www.kontron.com/resources/
collateral/industry_brochures/folder_
automation_2013.pdf

24. Leon FP, Kammel S (2003) Image fusion tech-
niques for robust inspection of specular surfaces. In:
AeroSense 2003, International Society for Optics and
Photonics, pp 77–86

25. Maes F, Collignon A, Vandermeulen D, Marchal
G, Suetens P (1997) Multimodality image registra-
tion by maximization of mutual information. Medi-
cal Imaging, IEEE Transactions on 16(2):187–198

26. Mahapatra NR, Venkatrao B (1999) The processor-
memory bottleneck: problems and solutions. Cross-
roads 5(3es):2

27. Mattes D, Haynor DR, Vesselle H, Lewellen TK, Eu-
bank W (2003) PET-CT image registration in the
chest using free-form deformations. Medical Imag-
ing, IEEE Transactions on 22(1):120–128

28. Modersitzki J (2004) Numerical Methods for Image
Registration. Oxford University Press

29. Modersitzki J (2009) FAIR - Flexible Algorithms for
Image Registration. SIAM, Philadelphia

30. Mueller B, Olesch J, Lotz J, Barendt S, Sedlaczek
O, Lahrmann B, Grabe N, Bestvater F, Kauczor U,
Schnabel P, Hoffmann H, Fischer B, Schirmacher P,
Warth A, Breuhahn K (2013) 3D reconstruction of
lung adenocarcinomas – one module for the devel-
opment of mathematical multiscale models of lung
cancer. Der Pathologe 34(1):140

31. Nocedal J, Wright S (2006) Numerical optimization,
2nd edn. Springer, Berlin, Heidelberg

32. Reed JM, Hutchinson S (1996) Image fusion and
subpixel parameter estimation for automated opti-
cal inspection of electronic components. Industrial
Electronics, IEEE Transactions on 43(3):346–354

33. Remagnino P, Jones G (2002) Automated registra-
tion of surveillance data for multi-camera fusion. In:
Information Fusion, 2002. Proceedings of the Fifth
International Conference on, IEEE, vol 2, pp 1190–
1197

34. Rühaak J, Heldmann S, Kipshagen T, Fischer B
(2013) Highly accurate fast lung CT registration. In:
SPIE Medical Imaging, International Society for Op-
tics and Photonics

35. Rühaak J, König L, Hallmann M, Papenberg N,
Heldmann S, Schumacher H, Fischer B (2013) A
fully parallel algorithm for multimodal image regis-
tration using normalized gradient fields. In: Biomed-
ical Imaging (ISBI), 2013 IEEE 10th International
Symposium on, pp 572–575

36. Saban N (2011) Multicore DSP vs GPUs.
URL www.sagivtech.com/contentManagment/
uploadedFiles/fileGallery/Multi_core_DSPs_
vs_GPUs_TI_for_distribution.pdf

37. Schmitt O, Modersitzki J, Heldmann S, Wirtz S, Fis-
cher B (2007) Image registration of sectioned brains.
International Journal of Computer Vision 73(1):5–39

38. Sen M, Hemaraj Y, Plishker W, Shekhar R, Bhat-
tacharyya SS (2008) Model-based mapping of re-
configurable image registration on FPGA platforms.
Journal of Real-Time Image Processing 3(3):149–162

39. Stotzer E, Jayaraj A, Ali M, Friedmann A, Mitra G,
Rendell A, Lintault I (2013) OpenMP on the low-
power TI keystone II ARM/DSP system-on-chip. In:
Rendell A, Chapman B, Müller M (eds) OpenMP in
the Era of Low Power Devices and Accelerators, Lec-
ture Notes in Computer Science, vol 8122, Springer
Berlin Heidelberg, pp 114–127

40. Texas Instruments (2013) AM335x sitara proces-
sors. URL http://www.ti.com/lit/ds/symlink/
am3359.pdf

41. Texas Instruments (2014) AM335x starter kit. URL
www.ti.com/tool/tmdssk3358

42. Texas Instruments (2014) C6678 power consump-
tion model (rev. d). URL www.ti.com/litv/zip/
sprm545d

43. Texas Instruments (2014) SYS/BIOS (TI-RTOS
kernel) v6.40. URL http://www.ti.com/lit/ug/
spruex3n/spruex3n.pdf

www.intel.com/content/dam/www/public/us/en/documents/datasheets/3rd-gen-core-desktop-vol-1-datasheet.pdf
www.intel.com/content/dam/www/public/us/en/documents/datasheets/3rd-gen-core-desktop-vol-1-datasheet.pdf
www.intel.com/content/dam/www/public/us/en/documents/datasheets/3rd-gen-core-desktop-vol-1-datasheet.pdf
http://www.kontron.com/resources/collateral/industry_brochures/pos_poi_2010_global_single.pdf
http://www.kontron.com/resources/collateral/industry_brochures/pos_poi_2010_global_single.pdf
http://www.kontron.com/resources/collateral/industry_brochures/pos_poi_2010_global_single.pdf
http://www.kontron.com/resources/collateral/industry_brochures/folder_automation_2013.pdf
http://www.kontron.com/resources/collateral/industry_brochures/folder_automation_2013.pdf
http://www.kontron.com/resources/collateral/industry_brochures/folder_automation_2013.pdf
www.sagivtech.com/contentManagment/uploadedFiles/fileGallery/Multi_core_DSPs_vs_GPUs_TI_for_distribution.pdf
www.sagivtech.com/contentManagment/uploadedFiles/fileGallery/Multi_core_DSPs_vs_GPUs_TI_for_distribution.pdf
www.sagivtech.com/contentManagment/uploadedFiles/fileGallery/Multi_core_DSPs_vs_GPUs_TI_for_distribution.pdf
http://www.ti.com/lit/ds/symlink/am3359.pdf
http://www.ti.com/lit/ds/symlink/am3359.pdf
www.ti.com/tool/tmdssk3358
www.ti.com/litv/zip/sprm545d
www.ti.com/litv/zip/sprm545d
http://www.ti.com/lit/ug/spruex3n/spruex3n.pdf
http://www.ti.com/lit/ug/spruex3n/spruex3n.pdf

21

44. Texas Instruments (2014) TMS320C6678 - multicore
fixed and floating-point digital signal processor. URL
www.ti.com/lit/ds/symlink/tms320c6678.pdf

45. Texas Instruments (2014) TMS320C6678 evaluation
modules. URL www.ti.com/tool/tmdsevm6678

46. Tramnitzke F, Rühaak J, König L, Modersitzki J,
Köstler H (2014) GPU Based Affine Linear Image
Registration using Normalized Gradient Fields. In:
Proc. Seventh International Workshop on High Per-
formance Computing for Biomedical Image Analysis
(HPC-MICCAI), Boston, MA, USA

47. Vercauteren T, Pennec X, Perchant A, Ay-
ache N (2009) Diffeomorphic demons: Efficient
non-parametric image registration. NeuroImage
45(1):S61–S72

48. Viola P, Wells III WM (1997) Alignment by maxi-
mization of mutual information. International Jour-
nal of Computer Vision 24(2):137–154

49. Wu H, Kim Y (1998) Fast wavelet-based multireso-
lution image registration on a multiprocessing digi-
tal signal processor. International Journal of Imaging
Systems and Technology 9(1):29–37

50. Zitová B, Flusser J (2003) Image registration
methods: a survey. Image and Vision Computing
21(11):977 – 1000

www.ti.com/lit/ds/symlink/tms320c6678.pdf
www.ti.com/tool/tmdsevm6678

	Introduction
	Related work
	Mathematical framework
	Hardware-specific algorithm design
	Embedded systems architecture
	Experiments
	Results and discussion

