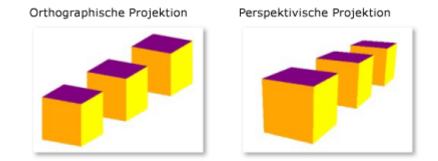
4.4. PROJEKTIONSTRANSFORMATIONEN

Projektions-Transformationen

- Abbildung der 3D-Szene auf den zweidimensionalen Raum
- Projektionsarten:
 - Orthografische Projektion (auch: Parallelprojektion)
 - Perspektivische Projektion (auch: Zentralprojektion)



- Wegfall einer Dimension, z.B. $(x, y, z) \rightarrow (x, y)$
- z-Werte werden aber weiterhin normiert gespeichert für spätere Verarbeitungsschritte (z.B. Verdeckungsberechnung)

https://msdn.microsoft.com/de-de/library/system.windows.media.media3d.orthographiccamera%28v=vs.110%29.aspx

Orthografische Projektion

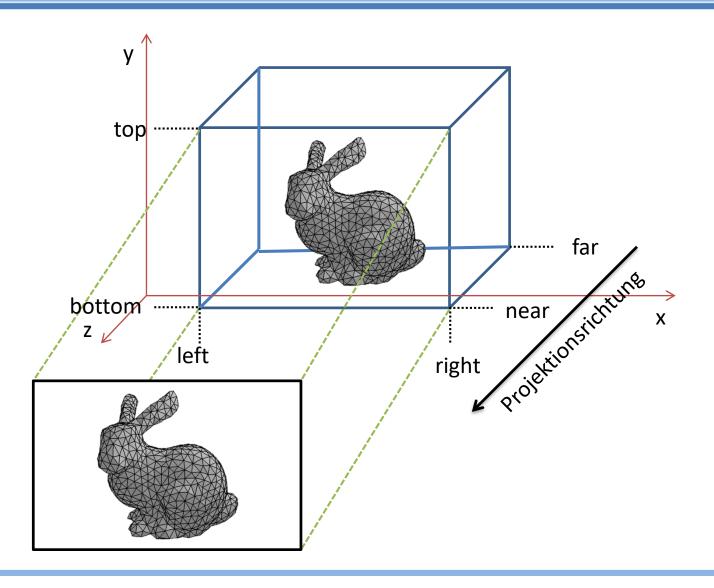
- Parallele Strahlen von Objekten zur Bildfläche
 - Größen und Winkel aller Objekte bleiben erhalten
- Ausschnitt aus der Szene durch Clipping Planes.
- In OpenGL:

```
glOrtho( GLdouble left, GLdouble right, Gldouble bottom, GLdouble top, Gldouble near, Gldouble far);
```

Transformationsmatrix der orthografischen Projektion: Identitätsmatrix

$$\mathbf{P}_{ortho} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

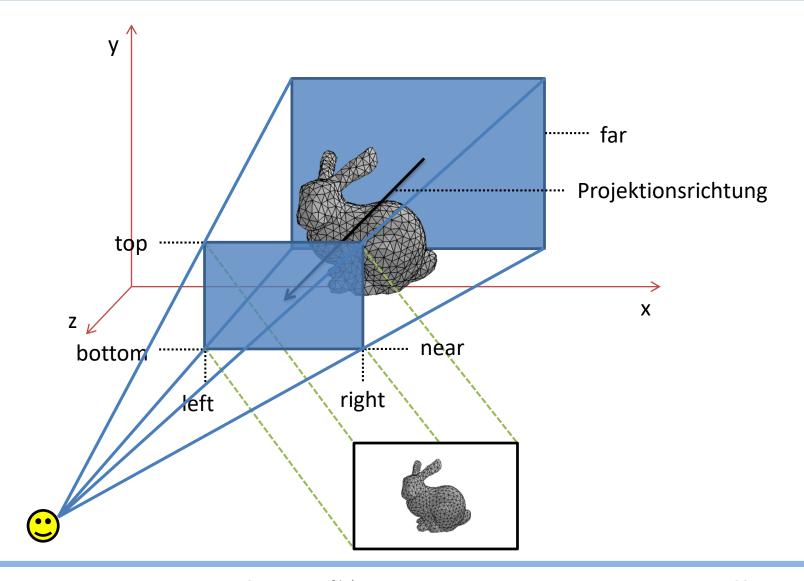
Orthografische Projektion

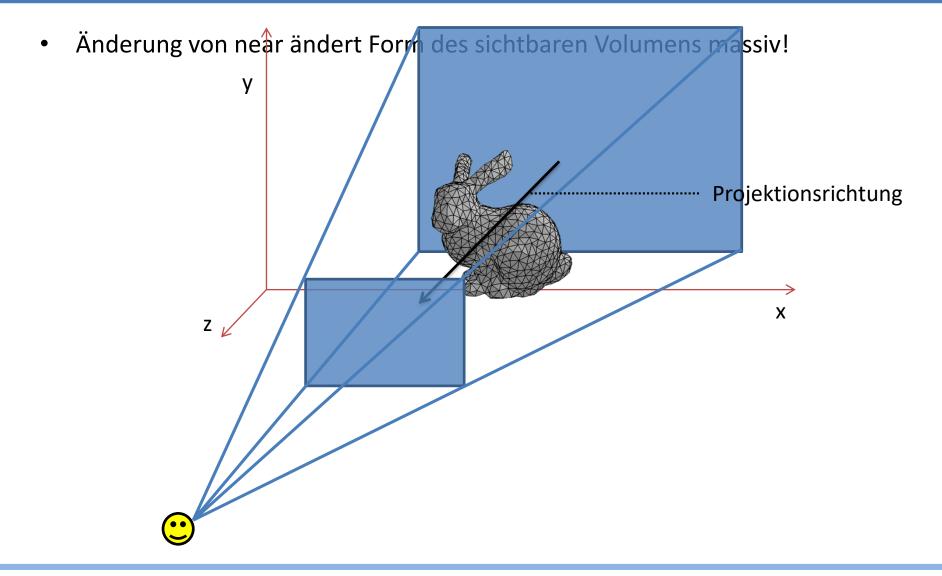


- Konvergierende Strahlen von allen sichtbaren Objekten zum Augpunkt
- Objekte nah am Augpunkt erscheinen größer als entfernte Objekte
- Ausschnitt aus der Szene durch einen Kegelstumpf, definiert durch Clipping planes
- In OpenGL:

Transformationsmatrix der perspektivischen Projektion:

$$\mathbf{P_{persp.}} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 + rac{far}{near} & far \ 0 & 0 & -rac{1}{near} & 0 \end{pmatrix}$$





- **glFrustum** oft etwas umständlich: left, right, bottom, top müssen z.B. erst aus Blickwinkeln berechnet werden.
- OpenGL Utility Library definiert bequemeren Befehl für solche Fälle:

- α : Vertikaler Blickwinkel im Wertebereich $[0, 180]^{\circ}$
- aspect: Verhältnis zwischen vertikalem (α) und horizontalen (β) Blickwinkel: β/α .
- Berechnung von left, right, top, bottom:

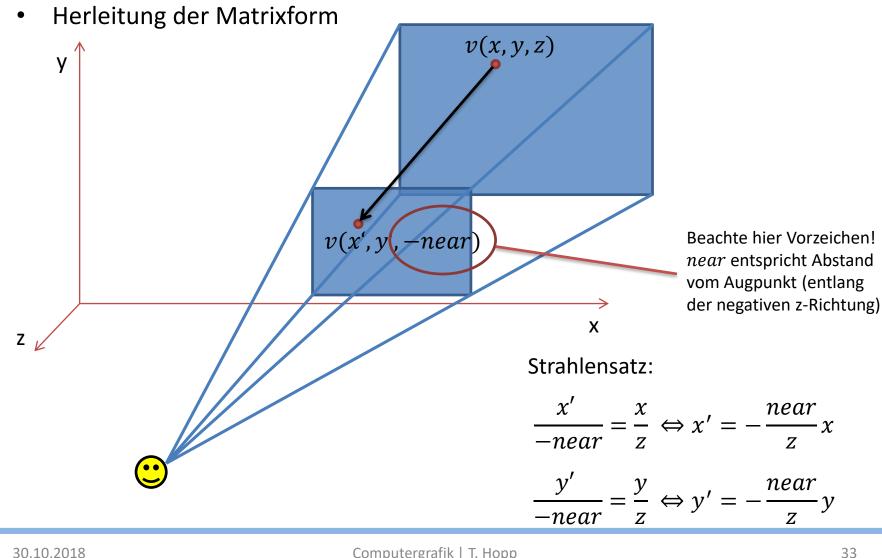
$$left = -near \cdot \tan \frac{\beta}{2}$$

$$right = near \cdot \tan \frac{\beta}{2}$$

$$bottom = -near \cdot \tan \frac{\alpha}{2}$$

$$top = near \cdot \tan \frac{\alpha}{2}$$

 Einschränkung: Blickwinkel müssen nach links/rechts, oben/unten symmetrisch sein!



Perspektivische Projektionsmatrix erfüllt die Strahlensatzgleichungen:

$$v' = \mathbf{P}v \Leftrightarrow \begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 + \frac{far}{near} & far \\ 0 & 0 & -\frac{1}{near} & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ -\frac{z}{near} \end{pmatrix}$$

• Dividieren durch den inversen Streckungsfaktor ergibt die euklidischen Koordinaten:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} -\frac{near}{z} x \\ -\frac{near}{z} y \end{pmatrix}$$
Siehe Strahlensatz auf der letzten Folie!

Normierung

- Abbildung der near clipping plane auf Bildschirmfenster: Zwischenschritt Normierung
 - Division durch halbe Ausdehnung der near clipping plane
 - Verschieben des Zentrums des Wertebereichs in den Ursprung

$$x' = \frac{2}{right - left} x - \frac{right + left}{right - left}$$

$$y' = \frac{2}{top - bottom} y - \frac{top + bottom}{top - bottom}$$

$$z' = \frac{-2}{far - near} z - \frac{far + near}{far - near}$$

$$w' = w$$

- Wertebereich nach der Transformation: $[-w \ w]$
- Division durch w bildet x, y, z-Werte auf Intervall $[-1\ 1]$ ab.

Normierung

- Erzielt Unabhängigkeit von Größe des sichtbaren Volumens
- In Matrix-Schreibweise:

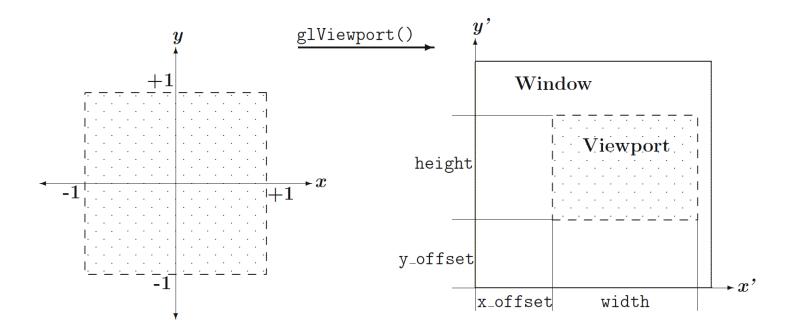
$$\mathbf{N} = \begin{pmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bottom} & 0 & -\frac{top + bottom}{top - bottom} \\ 0 & 0 & \frac{-2}{far - near} & -\frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• glOrtho(), glFrustum() und gluPerspective() führen Projektion und Normierung gemeinsam durch!

4.5. VIEWPORT-TRANSFORMATIONEN

Viewport-Transformation

- Abbildung der Szene auf Ausschnitt des Bildschirms (Viewport)
- Viewport definiert in Pixeln
 - Startpunkt (x_{Offset} , y_{Offset})
 - Ausdehnung (width, height)



A. Nischwitz et al. "Computergrafik und Bildverarbeitung", Band 1: Computergrafik"

Viewport-Transformation

• Umrechnung aus den normierten projizierten Daten (für w=1):

$$x' = \frac{width}{2}x + \left(x_{\text{offset}} + \frac{width}{2}\right)$$
$$y' = \frac{height}{2}y + \left(y_{\text{offset}} + \frac{height}{2}\right)$$

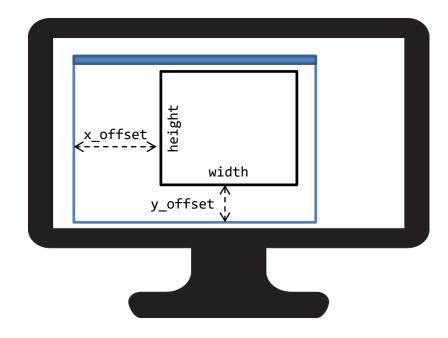
In Matrix-Schreibweise:

$$\mathbf{V} = \begin{pmatrix} \frac{width}{2} & 0 & 0 & x_{\text{offset}} + \frac{width}{2} \\ 0 & \frac{height}{2} & 0 & y_{\text{offset}} + \frac{height}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• Die z-Koordinate normiert auf den Wertebereich $[-1\ 1]$ wird erhalten um spätere Auswertungen durchführen zu können (z.B. Verdeckungsberechnung)

Viewport-Transformation

- Umsetzung in OpenGL: glViewport(x_offset, y_offset, width, height);
- Größen in Pixel
- Offset bezieht sich auf Fenster
- Wenn nicht explizit angeben:
 Viewport = Window.
- Window kann mehrere Viewports enthalten
- Aspektverhältnis des Viewports muss dem des sichtbaren Volumens entsprechen, sonst werden Objekte gestaucht/gedehnt dargestellt.



4.6. MATRIZENSTAPEL

Matrizenstapel

 Abarbeitungsreihenfolge: Jeder Vertex durchläuft alle Transformationsstufen

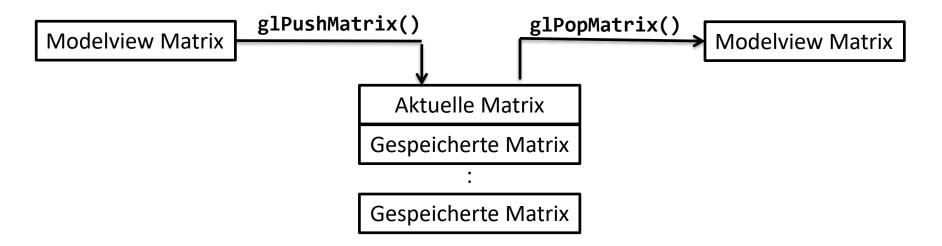
$$v' = V(N(P(S(R(T \cdot v)))))$$

- Hoher Aufwand, da große Zwischenergebnisse gespeichert werden müssen.
- Effizienterer Weg:

$$v' = (\mathbf{V} \cdot \mathbf{N} \cdot \mathbf{P} \cdot \mathbf{S} \cdot \mathbf{R} \cdot \mathbf{T}) \cdot v$$

- Meist mehrere Matrizen vorhanden, z.B. zur Wiederverwendung von Objekten → Matrizenstapel zur Zwischenspeicherung von Matrizen
- In OpenGL:
 - "Modelview-Matrizen": bis 32 Matrizen (glMatrixMode(GL_MODELVIEW))
 - "Projektions-Matrizen": bis 2 Matrizen (glMatrixMode(GL_PROJECTION))

Matrizenstapel



• glPushMatrix:

- Anfertigen einer Kopie der aktuellen Matrix + auf dem Stapel speichern.
- Weitere Transformationen können hinzugefügt werden (Multiplikation auf bisher aktuelle Matrix).

glPopMatrix:

Entfernt aktuelle Matrix und kehrt zur letzten auf dem Stapel zurück.

Matrizenstapel

- Beispielhafte Benutzung der Matrizenstapel:
 - Projektions-Matrizen-Stapel: Umschalten zwischen orthografischer und perspektivischer Projektion
 - Modelview-Matrizen-Stapel: Wiederverwendung von Objekten

ZUSAMMENFASSUNG

Zusammenfassung

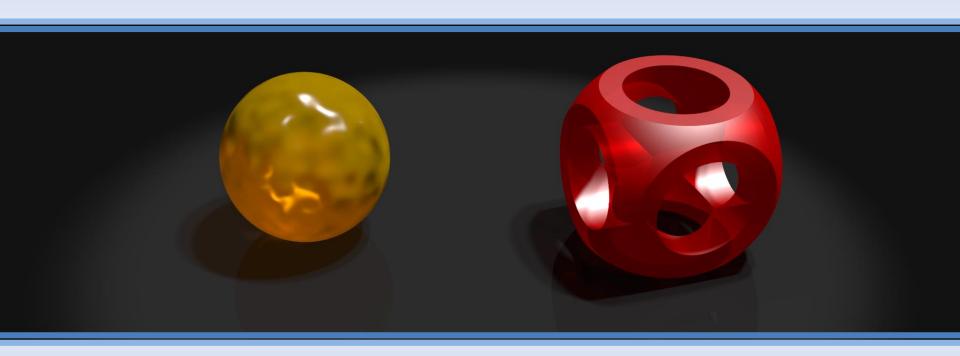
- Transformationskette von lokalen Koordinaten bis Bildschirmkoordinaten
- Verwendung von homogenen Koordinaten in allen Transformationen
 - Transformationsmatrizen immer 4x4.
- Modelltransformationen: Positionierung von Objekten in Weltkoordinaten
 - Translation, Rotation, Skalierung
 - Reihenfolge der Transformationen wichtig
- Augpunkttransformationen zur Positionierung des Beobachters
 - Lassen sich in Modelltransformationen überführen
- Projektionstransformation zur Abbildung der 3D-Szene in 2D
 - Orthografische oder perspektivische Projektion
 - Normierung der Koordinaten
- Viewport-Transformationen: Positionierung auf dem Bildschirm bzw. im Fenster
- Wiederverwendung von Matrizen/Transformationen durch Matrizenstapel

Übungsfragen Kapitel 4

- Welche Koordinatensysteme und Transformationen kommen in der Transformationskette vor? Geben Sie die Reihenfolge der Abarbeitung an.
- Warum werden Modelltransformation und Augpunkt-Transformation meist in einer gemeinsamen Modelview-Matrix zusammengefasst?
- Was ist der Matrizenstapel? Wofür wird er benutzt?

Computergrafik

Т. Норр

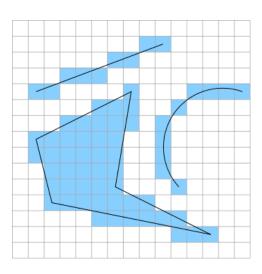


Themenübersicht

- 1. Einführung
- 2. Programmierbibliotheken / OpenGL
- 3. Geometrische Repräsentation von Objekten
- 4. Koordinatensysteme und Transformationen
- 5. Zeichenalgorithmen
- 6. Buffer-Konzepte
- 7. Farbe, Beleuchtung und Schattierung
- 8. Texturen
- 9. Animationen
- 10. Raytracing
- 11. Volumenvisualisierung

Zeichenalgorithmen

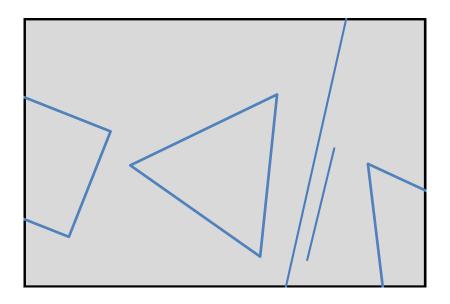
- Durch Objekte und Transformationen definierte Szene muss auf den Bildschirm gezeichnet werden.
- Zeichenalgorithmen übernehmen diesen Vorgang des sogenannten Rasterns
 - D.h. Umsetzung eines kontinuierlichen Objektes in diskrete Pixel



5.1. CLIPPING

Clipping

- Nach Durchlaufen der Transformationskette ist nur noch ein Ausschnitt der 3D Szene zu sehen.
- Alle Objekte die außerhalb dieses sichtbaren Bereichs (=Viewport) liegen müssen nicht gezeichnet werden.
- Clipping = Zuschneiden von Objekten an einem vorgegebenen Bereich.

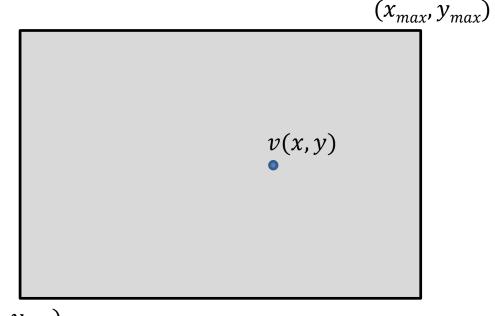


Clipping von Vertices

- Einfachste Form des Clippings
 - Test ob der Vertex innerhalb des Viewports liegt:

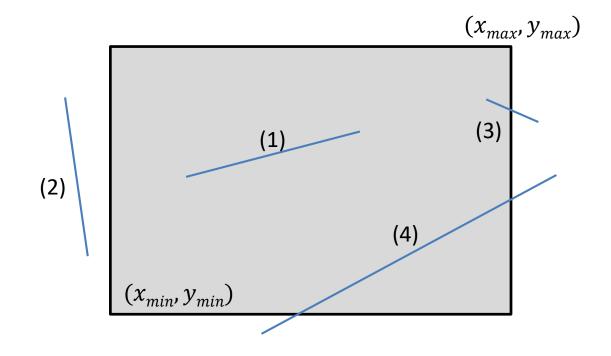
Es müssen folgende Bedingungen erfüllt sein:

$$x_{min} \le x \le x_{max}$$
$$y_{min} \le y \le y_{max}$$



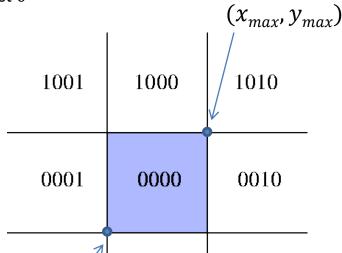
 (x_{min}, y_{min})

- 4 mögliche Lagebeziehungen von Linien zum Darstellungsbereich:
 - (1) Linie befindet sich vollständig im Darstellungsbereich
 - (2) Linie befindet sich vollständig außerhalb des Darstellungsbereichs
 - (3) Ein Endpunkt innerhalb, ein Endpunkt außerhalb
 - (4) Beide Endpunkte außerhalb, aber Linie schneidet den Darstellungsbereich

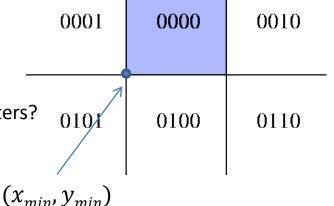


- Algorithmus von Cohen und Sutherland:
 - Prinzip der Bereichsprüfung: Einteilung des Darstellungsbereichs in 9 Teile
 - Zuordnung eines Bereichscodes zu jedem Anfangs- und Endvertex
 - Bereichscodes aus binärer Darstellung der Lagebeziehung der Bereiche
 - Erstes Bit (hinten): 1 = links von Darstellungsbereich, sonst 0
 - usw.

$y_{max} - y < 0$:	viertes Bit = 1
$y - y_{min} < 0:$	drittes Bit = 1
$x_{max} - x < 0$:	zweites Bit = 1
$x - x_{min} < 0$:	erstes Bit = 1



- Beide Punkte innerhalb des Fensters?
 - Ja, wenn bitweise ODER-Verknüpfung von v_1 und $v_2=0$
- Beide Punkte und gesamte Linie außerhalb des Fensters?
 - Ja, wenn bitweise UND-Verknüpfung von v_1 und v_2 an einer Stelle ungleich 0



http://www-lehre.inf.uos.de/~rkunze/flashweather/Diplomarbeit/node37.html

- Ist keiner der beiden Tests erfolgreich, ist nicht auszuschließen dass die Linie das Fenster schneidet.
- In diesem Fall wird ein Schnitttest durchgeführt:
 - Berechnung des Schnittpunktes der Linie mit einer Seite des Fensters
 - Seite(n) kann (können) anhand von Bereichscode gewählt werden.
 - Für beide Teilsegmente der Linie wird erneut getestet ob Anfangs- oder Endpunkt außerhalb des Fensters liegen
 - Gegebenenfalls erneute Schnittpunktberechnung für Teilsegmente

1001	1000	1010
0001	0000	0010
0101	0100	0110

- Bestimmung des Schnittpunktes einer Linie mit dem Darstellungsbereich:
 - Parameterform (Punkt-Richtungsform) einer Geraden: $x = v_0 + r(v_1 v_0)$
 - Eine Koordinate des Schnittpunktes ist durch den Algorithmus von Cohen und Sutherland i.d.R. bekannt, z.B. $s_v = y_{max}$
 - Gesucht wird in diesem Beispiel nun s_r .
 - Daraus ergibt sich folgendes Gleichungssystem:

(1)
$$s_x = v_{0,x} + r(v_{1,x} - v_{0,x})$$

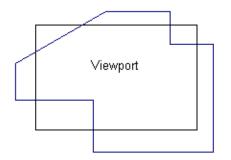
(2)
$$s_y = v_{0,y} + r(v_{1,y} - v_{0,y})$$

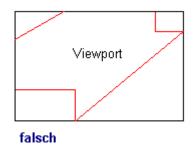
- Aus (2) lässt sich nun r berechnen, da z.B. s_v bekannt ist.
- Das Ergebnis wird in (1) eingesetzt und nach s_x aufgelöst:

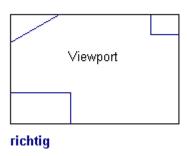
$$s_x = v_{0,x} + \frac{s_y - v_{0,y}}{v_{1,y} - v_{0,y}} (v_{1,x} - v_{0,x})$$

Clipping von Polygonen

• Linien-Clipping-Verfahren kann bei Anwendung auf Polygone zu falschen Ergebnissen führen: Topologie eines Polygons wird u.U. zerstört.

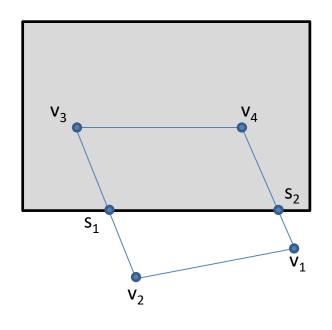


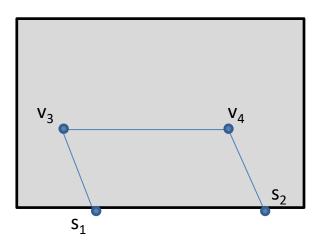




- Algorithmus von Sutherland und Hodgman:
 - Interpretation der Kanten des Darstellungsbereichs als Geraden ohne Begrenzung
 - Schrittweise Schneiden aller Kanten des Polygons an jeweils einer Geraden des Darstellungsbereichs
 - Entscheidung welche Vertices in Ausgabepolygon übernommen werden:
 - (1) Beide Vertices der Kante außerhalb: keinen Vertex in Ausgabepolygon übernehmen
 - (2) Gerichtete Kante von v_1 zu v_2 von außen nach innen: Schnittpunkt und v_2 übernehmen
 - (3) Beide Vertices der Kante innerhalb: beide Vertices in das Ausgabepolygon übernehmen
 - (4) Gerichtete Kante von v_1 zu v_2 von innen nach außen: Schnittpunkt und v_1 übernehmen

Clipping von Polygonen





Kante $v_1 \rightarrow v_2$: Beide außerhalb. Nicht in Ausgabepolygon übernehmen

Kante $v_2 \rightarrow v_3$: Gerichtete Kante von außen nach innen: s_1 und v_3 einfügen

Kante $v_3 \rightarrow v_4$: Beide innerhalb. v_4 einfügen (v_3 wurde schon)

Kante $v_4 \rightarrow v_1$: Gerichtete Kante von innen nach außen: s_2 einfügen (v_4 wurde schon)

5.2. ZEICHNEN VON LINIEN

Brute Force

- Naiver Algorithmus basierend auf Steigungsform:
 - Berechnung der Steigung: $m = \frac{\Delta y}{\Delta x} = \frac{v_{2,y} v_{1,y}}{v_{2,x} v_{1,x}}$
 - Starte von links: $y_i = mx_i + B$
 - Zeichne den Pixel $(x_i, round(y_i))$
 - Inkrementelles Ermitteln des nächsten Pixels:

$$y_{i+1} = mx_{i+1} + B$$

$$= m(x_i + \Delta x) + B$$

$$= m\Delta x + mx_i + B$$

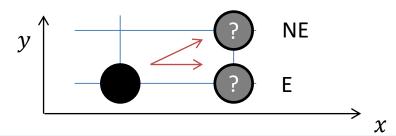
$$= m\Delta x + y_i$$

Nachteile: Speicherung als Gleitkommazahl + aufwendige Rundung

- = Bresenham Algorithmus, nach Jack Bresenham, 1965
- Grundidee: Nutzung der Scanline. Aufbau des Bildes von links nach rechts
- Vorteil: Beschränkung auf ausschließlich Ganzzahl-Arithmetik möglich
- Reduktion des Problems auf Linien, deren Steigungswinkel zwischen 0° und 45° liegt.
 - Alle anderen Linien lassen sich aus Symmetrieüberlegungen auf diesen Fall zurückführen.

Ablauf:

- X-Koordinate wird schrittweise um 1 erhöht
- Für zugehörige y-Koordinate wird festgestellt, ob sie gleich bleibt (E) oder um 1 erhöht wird (NE)



Herleitung der y-Wert-Entscheidung: E oder NE?

- Konventionen
 - Zeichnen einer Linie von (x_0, y_0) zu (x_1, y_1)
 - (x_p, y_p) sei ein bereits ausgewählter Pixel auf dieser Linie
- Steigungsform einer Linie:

$$y = \frac{\Delta y}{\Delta x}x + B$$
 mit $\Delta y = y_1 - y_0$, $\Delta x = x_1 - x_0$

Umgeschrieben in implizite Formulierung:

$$F(x, y) = \Delta y \cdot x - \Delta x \cdot y + B \cdot \Delta x$$

- F(x,y) ist
 - = 0 für Punkte auf der Linie
 - > 0 für Punkte unterhalb der Linie
 - < 0 für Punkte oberhalb der Linie</p>

Berechnet wird nun der Funktionswert von Punkt M (Midpoint) als

$$F(M) = F(x_p + 1, y_p + \frac{1}{2}) = d$$

- Das Vorzeichen der Entscheidungsvariablen d entscheidet nun darüber ob der y-Wert inkrementiert wird oder gleich bleibt:
 - d > 0: wähle NE (entspr.: M liegt unterhalb der Geraden)
 - $d \le 0$: wähle E (entspr.: M liegt oberhalb der Geraden)
- Die neue Entscheidungsvariable d_{new} wird in Abhängigkeit von der Wahl NE oder E inkrementell aus der alten berechnet:
 - Wenn E gewählt wurde:

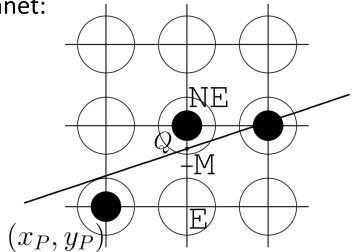
$$d_{new} = F(x_p + 2, y_p + \frac{1}{2})$$

$$\Rightarrow d_{new} = d_{old} + \Delta y$$

Wenn NE gewählt wurde:

$$d_{new} = F(x_p + 2, y_p + \frac{3}{2})$$

$$\Rightarrow d_{new} = d_{old} + (\Delta y - \Delta x)$$



S. Krömker: Computergrafik I, Universität Heidelberg

- Bei der Initialisierung wird der anfängliche Wert der Entscheidungsvariablen festgelegt:
 - Funktionswert bei (x_0, y_0)

$$d_{ini} = F(x_0 + 1, y_0 + \frac{1}{2}) = F(x_0, y_0) + \Delta y - \frac{\Delta x}{2} = \Delta y - \frac{\Delta x}{2}$$

$$= 0$$

Somit ergibt sich folgender Pseudocode:

```
// init
dx = x1-x0;
dy = y1-y0;
incrE = dy*2;
incrNE = (dy-dx)*2;
d = dy*2 - dx;
x = x0;
y = y0;
```

Inkremente entsprechend der Wahl E oder NE

 \rightarrow Hier multipliziert mit 2 um den Bruch $(y + \frac{1}{2})$ zu sparen