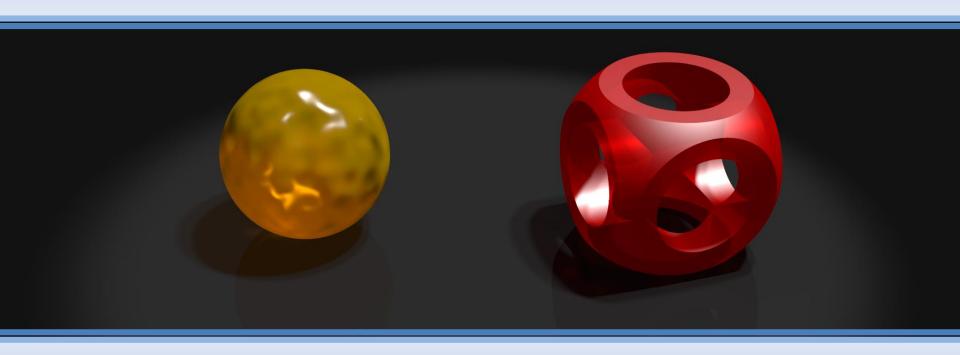
Computergrafik

Т. Норр



Themenübersicht

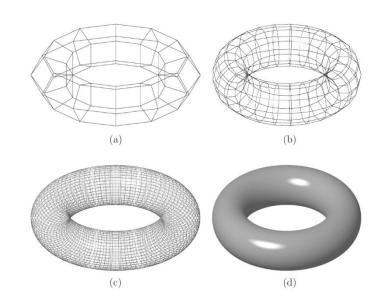
- 1. Einführung
- 2. Programmierbibliotheken / OpenGL
- 3. Geometrische Repräsentation von Objekten
- 4. Koordinatensysteme und Transformationen
- 5. Zeichenalgorithmen
- 6. Buffer-Konzepte
- 7. Farbe, Beleuchtung und Schattierung
- 8. Texturen
- 9. Animationen
- 10. Raytracing
- 11. Volumenvisualisierung

Einordnung

- Nachbildung von (realen) Objekten durch abstrakte Objekte
- Meist nur Abbildung der opaken Oberflächen eines Objektes
- Typische Fragestellungen:
 - Direkte Repräsentation von einfachen geometrischen Objekten ⇔ Annäherung an komplexe geometrische Objekte aus mehreren einfachen geometrischen Objekten
 - Exakte Beschreibung ⇔ ausreichende Approximation zur Darstellung

Planare Polygone

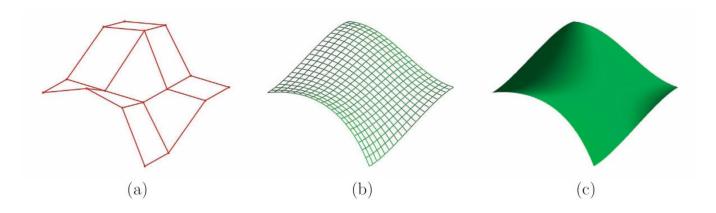
- Oberflächennetze aus planaren Polygonen am häufigsten zur Approximation von Objekten eingesetzt (→ Kapitel 3.2)
- Grundobjekte meist (→ Kapitel 3.1)
 - Dreiecke (triangles)
 - Viereck (quads)
- Vorteil: schnell berechenbar
- Nachteil: Genauigkeit der Approximation abhängig von Polygonauflösung



A. Nischwitz et al. "Computergrafik und Bildverarbeitung", Band 1: Computergrafik"

Gekrümmte Flächen

- Räumlich gekrümmte Flächen zur Approximation einer Oberfläche (→ Kapitel 3.3)
 - Bézier-Flächen, B-Splines, NURBS
- Kontrollpunkte = Parametrisierung der Fläche
- Vorteil: wenig Speicherplatz, exaktere Approximation möglich
- Nachteil: rechenaufwändigere Operationen



A. Nischwitz et al. "Computergrafik und Bildverarbeitung", Band 1: Computergrafik"

Konstruktive Körpergeometrie

Zusammensetzen komplexer Objekte aus elementaren Körpern (CSG = Constructive Solid Geometry)

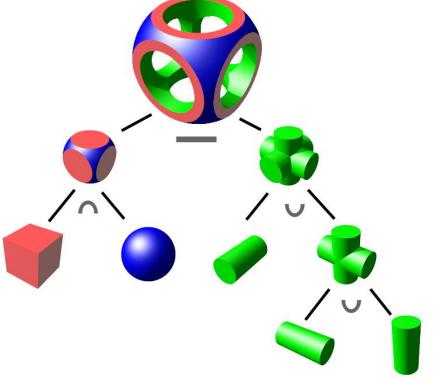
Bool'sche Operationen oder lineare Transformationen zur Vereinigung

von elementaren Objekten

Baumstruktur

Blätter = Grundobjekte

Knoten = Kombinationen

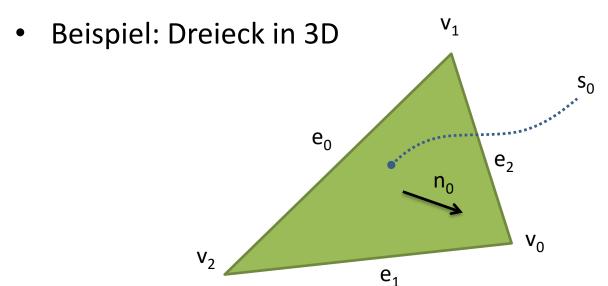


https://de.wikipedia.org/wiki/Geometrische Modellierung

3.1. GRUNDKÖRPER UND PLANARE POLYGONE

Beschreibung eines Körpers

- Die Geometrie eines K\u00f6rpers wird in der CG beschrieben durch
 - Punkte (Vertices)
 - Kanten (*Edges*)
 - Flächen (Surfaces)
 - Normalen



$$v_0 = (v_{0,x}, v_{0,y}, v_{0,z})$$

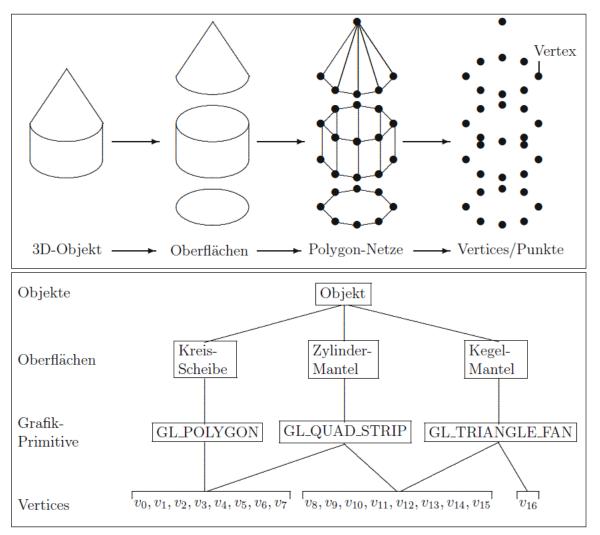
Geometrische Grundobjekte in OpenGL

- In OpenGL: Beschreibung aller Objekte durch Vertices,
 Kanten und Flächen (planare Polygone)
 - Geordneter Satz von Vertices
 - Verbindung der Vertices durch Kanten
 - Eine bzw. Verbindung mehrerer Kanten ergeben Objekte bzw. Flächen

→ Polygonnetze

 Definition komplexer Oberflächen durch Grundobjekten (OpenGL Grafik-Primitive)

Geometrische Objekte in OpenGL



A. Nischwitz et al. "Computergrafik und Bildverarbeitung", Band 1: Computergrafik"

10

Vertex-Definition in OpenGL

"Vertex Array"-Methoden

Skalarform	Vektor-Form
glVertex2f(x,y)	glVertex2fv(vec)
glVertex2d(x,y)	glVertex2dv(vec)
glVertex2s(x,y)	glVertex2sv(vec)
glVertex2i(x,y)	glVertex2iv(vec)
glVertex3f(x,y,z)	glVertex3fv(vec)
<pre>glVertex3d(x,y,z)</pre>	glVertex3dv(vec)
glVertex3s(x,y,z)	glVertex3sv(vec)
glVertex3i(x,y,z)	glVertex3iv(vec)
glVertex4f(x,y,z,w)	glVertex4fv(vec)
<pre>glVertex4d(x,y,z,w)</pre>	glVertex4dv(vec)
<pre>glVertex4s(x,y,z,w)</pre>	glVertex4sv(vec)
<pre>glVertex4i(x,y,z,w)</pre>	glVertex4iv(vec)

 \leftarrow 2D: Kartesische Koordinate eines Punktes $v_0 = (x, y)$

 \leftarrow 3D: Kartesische Koordinate eines Punktes $v_0 = (x, y, z)$

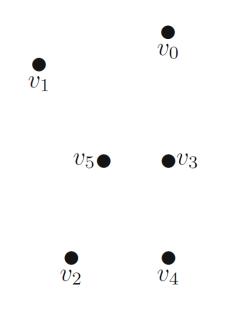
 \mathbf{w} = inverser Streckungsfaktor \mathbf{y} Homogene Koordinaten Kart. Koordinate eines Punktes $v_0 = (x/w, y/w, z/w)$

Vektorform: Zeiger auf Array. Flexibler, schneller!

 Verbindung von Vertices zu Flächen, Linien, Punkten glBegin / glEnd

1) GL_POINTS

Für jeden Vertex wird ein Punkt gerendert



```
glBegin(GL_POINTS))
  glVertex3fv(v0);
  glVertex3fv(v1);
  glVertex3fv(v2);
  glVertex3fv(v3);
  glVertex3fv(v4);
  glVertex3fv(v5);
glEnd();
```

Punkteigenschaften in OpenGL

- Größe eines Punktes
 - Default: 1 Pixel
 - Änderung über Zustandsvariable: glPointSize(Glfloat size)
 - Zulässige Punktgröße ist hardwareabhängig. Abfrage mit:

```
Glfloat sizes[2];
Glfloat incr;

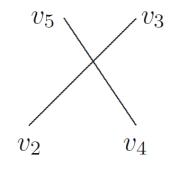
glGetFloatv(GL_POINT_SIZE_RANGE, sizes);
glGetFloatv(GL_POINT_SIZE_GRANULARITY, &incr);
```

- Form eines Punktes: quadratisch
 - Runde Punkte nur durch Vortäuschung per Anti-Aliasing und Transparenzberechnung

```
glEnable(GL_POINT_SMOOTH); glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
```

2) GL_LINES

 Nicht-verbundene Liniensegmente zwischen jeweils zwei aufeinanderfolgenden Vertices

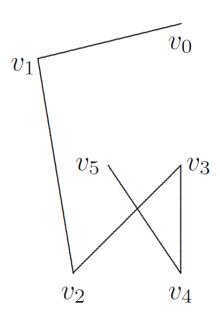


```
glBegin(GL_LINES);
   glVertex3fv(v0);
   glVertex3fv(v1);
   glVertex3fv(v2);
   glVertex3fv(v3);
   glVertex3fv(v4);
   glVertex3fv(v5);
glEnd();
```

Linienbreite analog zu Punktgröße: gllineWidth(Glfloat width)

3) GL_LINE_STRIP

 Verbundene Linien zwischen jeweils zwei aufeinanderfolgenden Vertices

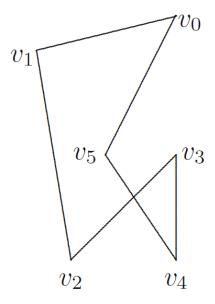


```
glBegin(GL_LINE_STRIP);
    glVertex3fv(v0);
    glVertex3fv(v1);
    glVertex3fv(v2);
    glVertex3fv(v3);
    glVertex3fv(v4);
    glVertex3fv(v5);
glEnd();
```

Keine Verbindung zwischen erstem und letztem Vertex

4) GL_LINE_LOOP

- Verbundene Linien zwischen jeweils zwei aufeinanderfolgenden Vertices
- Verbindung zwischen erstem und letztem Vertex (geschlossener Linienzug)

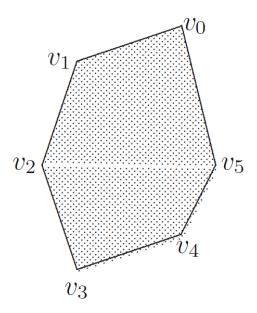


```
glBegin(GL_LINE_LOOP);
   glVertex3fv(v0);
   glVertex3fv(v1);
   glVertex3fv(v2);
   glVertex3fv(v3);
   glVertex3fv(v4);
   glVertex3fv(v5);
   glEnd();
```

16

5) GL_POLYGON

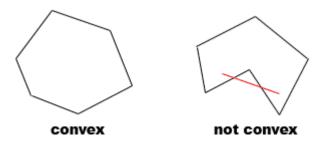
- Gefülltes <u>konvexes</u> Polygon
- Vieleck mit Anzahl Ecken = Anzahl Vertices
- deprecated kann durch GL_TRIANGLE_FAN ersetzt werden



```
glBegin(GL_POLYGON);
   glVertex3fv(v0);
   glVertex3fv(v1);
   glVertex3fv(v2);
   glVertex3fv(v3);
   glVertex3fv(v4);
   glVertex3fv(v5);
glEnd();
```

Polygone

- Anforderung in OpenGL: konvex und planar
 - Ein Polygon ist <u>konvex</u>, wenn alle Linien, die zwei beliebige Punkte des Polygons verbinden, vollständig innerhalb des Polygons liegen

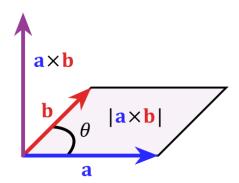


- Test auf Konvexität durch Ablaufen des Umrisses. Wenn man an Vertices immer in die gleiche Richtung abbiegt, ist das Polygon konvex
- Planar: Alle Punkte liegen in einer Ebene

Mathematische Grundlagen

Kreuzprodukt zweier Vektoren

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$



Geometrisch: entspricht einem senkrechten Vektor zu beiden Vektoren (=Normale)

Skalarprodukt zweier Vektoren

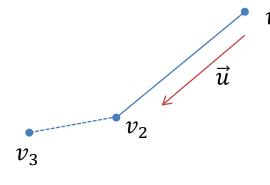
$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Geometrisch: Kosinus des Winkels zwischen den beiden Vektoren.

• Skalarprodukt zweier Vektoren gegebener Länge = 0 wenn sie senkrecht zueinander stehen, und maximal wenn sie die gleiche Richtung haben.

Polygone: Test auf Konvexität

Bestimmung der "Abbiegerichtung" (Algorithmus nach P. Bourke)



Gerade g durch v_1 und v_2 :

$$g: \overrightarrow{w} = \overrightarrow{v}_1 + r\overrightarrow{u}$$
 mit $\overrightarrow{u} = \overrightarrow{v_2} - \overrightarrow{v_1}$, $r \in \mathbb{R}$

Gleichungssystem:

$$v_{3_x} = v_{1_x} + ru_x$$

 $v_{3_y} = v_{1_y} + ru_y$

Jeweils auflösen nach r und gleichsetzen ergibt:

$$(v_{3_x} - v_{1_x})u_y = (v_{3_y} - v_{1_y})u_x$$

Gleichung erfüllt wenn v_3 auf der Geraden liegt, d.h.

$$f(v_3) = (v_{3_x}u_y - v_{3_y}u_x) - (v_{1_x}u_y - v_{1_y}u_x)$$

$$f(v_3) = 0$$
 v_3 liegt auf der Geraden g

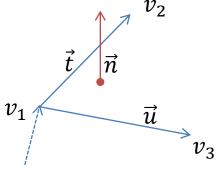
$$f(v_3) > 0$$
 v_3 liegt rechts von der Geraden g

$$f(v_3) < 0$$
 v_3 liegt links von der Geraden g

Polygone: Test auf Planarität

Drei Punkte eines Polygons definieren eine Ebene

$$E: x = \overrightarrow{v_1} + r(\overrightarrow{v_2} - \overrightarrow{v_1}) + s(\overrightarrow{v_3} - \overrightarrow{v_1})$$



- Test ob alle weiteren Punkte in dieser Ebene liegen
 - Z.B.: Einsetzen des Punktes in Ebenengleichung. Bei Lösung des LGS liegt der Punkt in der Ebene
 - Z.B.: Bestimmung des Normalenvektors der Ebene durch Kreuzprodukt

$$\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} = \begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix} \times \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} t_2 u_3 - t_3 u_2 \\ t_3 u_1 - t_1 u_3 \\ t_1 u_2 - t_2 u_1 \end{pmatrix}$$

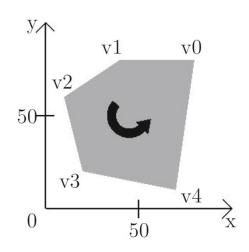
Damit v_4 in der Ebene liegt muss die Normale orthogonal zu $\overrightarrow{w} = (v_4 - v_1)$ sein:

$$f(v_4) = \overrightarrow{n} \cdot \overrightarrow{w} = n_1 w_1 + n_2 w_2 + n_3 w_3$$
, orthogonal wenn $f(v_4) = 0$

Polygone: Orientierung

- Vorder- und Rückseite bestimmt durch Vertex-Reihenfolge:
 - Definition gegen den Uhrzeigersinn: Vorderseite

```
glBegin(GL_POLYGON);
  glVertex3fv(v0);
  glVertex3fv(v1);
  glVertex3fv(v2);
  glVertex3fv(v3);
  glVertex3fv(v4);
glEnd();
```

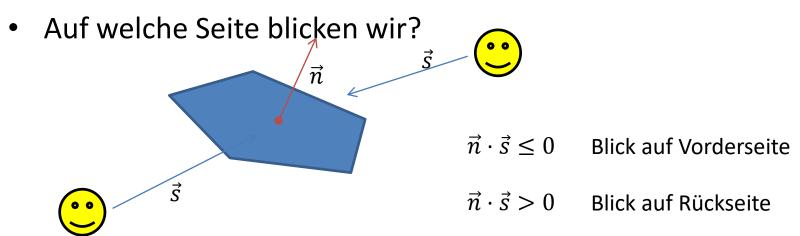


Umdrehen der Konvention in OpenGL: glfrontface(Glenum mode)

A. Nischwitz et al. "Computergrafik und Bildverarbeitung", Band 1: Computergrafik"

Polygone: Front/Back Face Culling

- OpenGL rendert standardmäßig Vorder- und Rückseite
- Deaktivieren des Renderns von Vorder- oder Rückseite durch <u>Culling</u>: glCullFace(Glenum mode)
 - GL_FRONT
 - GL_BACK
 - GL_FRONT_AND_BACK
- Erhöhung der Darstellungsgeschwindigkeit



23

Polygone: Füllmodi

- Festlegung des Füllmodus durch glPolygonMode(GLenum face, Glenum mode)
- Modi:

Füllung der Polygonflächen: GL_FILL

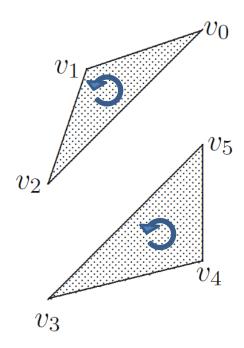
Nur Zeichnen der Linien: GL_LINE (Drahtgittermodell)

Nur Zeichnen der Vertices: GL_POINT

 Für welche Polygonseite der Füllmodus gilt wird durch den face-Parameter festgelegt.

6) GL_TRIANGLES

- Nicht verbundene Dreiecke aus jeweils drei aufeinanderfolgenden Vertices
- Reihenfolge wichtig, damit Dreiecke die gleiche Orientierung bekommen



```
glBegin(GL_TRIANGLES);
   glVertex3fv(v0);
   glVertex3fv(v1);
   glVertex3fv(v2);
   glVertex3fv(v3);
   glVertex3fv(v4);
   glVertex3fv(v5);
glEnd();
```

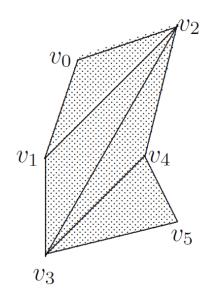
7) GL_TRIANGLE_STRIP

- Verbundene Dreiecke
- Implizite Änderung der Vertexreihenfolge beim Rendern:

- Dreieck 1: v_0, v_1, v_2 Ungerade n: $[v_{n-1}, v_n, v_{n+1}]$

- Dreieck 2: v_2, v_1, v_3 Gerade n: $[v_n, v_{n-1}, v_{n+1}]$

- Dreieck 3: v_2, v_3, v_4



```
glBegin(GL_TRIANGLE_STRIP);
   glVertex3fv(v0);
   glVertex3fv(v1);
   glVertex3fv(v2);
   glVertex3fv(v3);
   glVertex3fv(v4);
   glVertex3fv(v5);
glEnd();
```

A. Nischwitz et al. "Computergrafik und Bildverarbeitung", Band 1: Computergrafik"

Verbundene Dreiecke

- Am häufigsten verwendete Grafik-Primitive
 - Approximation von komplexen Oberflächen:
 - Beliebig genau
 - Speichersparend
 - Am schnellsten zu zeichnen
- Konsistente Dreieckorientierung innerhalb eines Triangle-Strips durch Reihenfolge der Vertex-Verwendung.

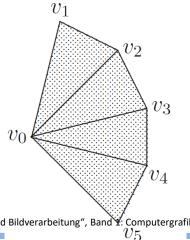
8) GL TRIANGLE FAN

Fächer aus Dreiecken. Wie GL TRIANGLE STRIP, nur andere Vertex-Reihenfolge:

 v_0, v_1, v_2 $[v_0, v_n, v_{n+1}]$ – Dreieck 1:

Dreieck 2: v_0, v_2, v_3

- Fläche entspricht dem eines konvexen Polygons aller Vertices
- Oft Verwendung für runde oder kegelförmige Flächen
- Orientierung konsistent

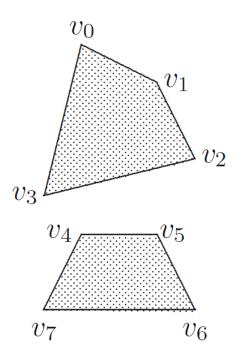


```
glBegin(GL_TRIANGLE_FAN);
   glVertex3fv(v0);
   glVertex3fv(v1);
   glVertex3fv(v2);
   glVertex3fv(v3);
   glVertex3fv(v4);
   glVertex3fv(v5);
glEnd();
```

A. Nischwitz et al. "Computergrafik und Bildverarbeitung", Band 4: Computergrafik"

9) GL_QUADS

- Einzelvierecke aus jeweils vier aufeinander folgenden Vertices
- (deprecated kann durch GL_TRIANGLE_STRIP ersetzt werden*)



```
glBegin(GL_QUADS);
   glVertex3fv(v0);
   glVertex3fv(v1);
   glVertex3fv(v2);
   glVertex3fv(v3);
   glVertex3fv(v4);
   glVertex3fv(v5);
   glVertex3fv(v6);
   glVertex3fv(v7);
   glEnd();
```

*Reihenfolge der Vertices beachten!

10) GL_QUAD_STRIP

- Verbundene Vierecke aus jeweils vier aufeinander folgenden Vertices
- (deprecated kann durch GL_TRIANGLE_STRIP ersetzt werden)
- Reihenfolge wichtig für die Orientierung der Quads

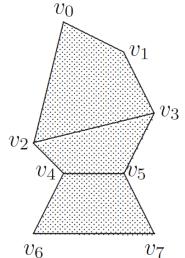
- Viereck 1: $[v_0, v_1, v_3, v_2]$

- Viereck 2: $[v_2, v_3, v_5, v_4]$

- Viereck 3: $[v_4, v_5, v_7, v_6]$

Vorschrift allgemein:

$$[v_{2(n-1)}, v_{2(n-1)+1}, v_{2n+1}, v_{2n}]$$



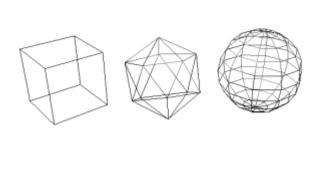
```
glBegin(GL_QUAD_STRIP);
   glVertex3fv(v0);
   glVertex3fv(v1);
   glVertex3fv(v2);
   glVertex3fv(v3);
   glVertex3fv(v4);
   glVertex3fv(v5);
   glVertex3fv(v6);
   glVertex3fv(v7);
   glEnd();
```

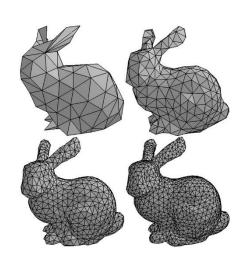
 $v_6 \\$ A. Nischwitz et al. "Computergrafik und Bildverarbeitung", Band 1: Computergrafik"

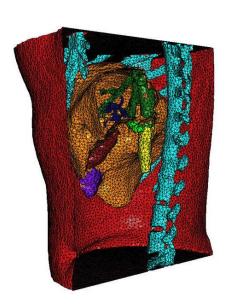
3.2. POLYGONNETZE

Polygonnetze

 Zusammenfügen von Grundobjekten (i.d.R. Dreiecke, Vierecke) zur Approximation komplexer Geometrien



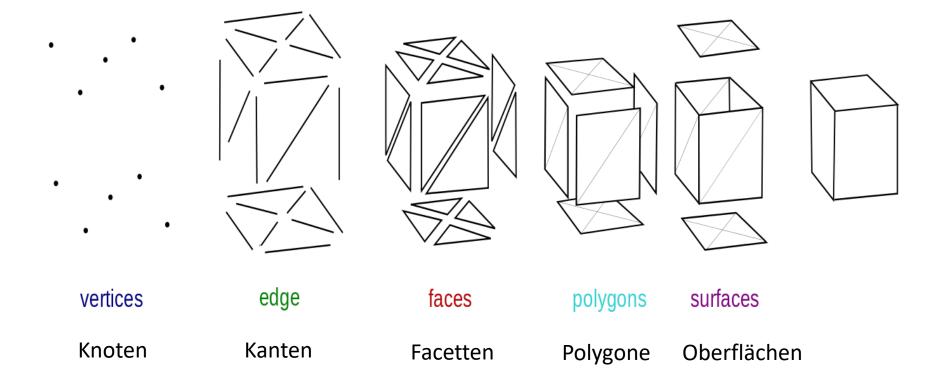




- Bestehend aus
 - Knoten (= Vertices)
 - Kanten (= Edges) → Flächen (= Faces)/Polygone
- Jeder Knoten muss mindestens eine Verbindung zum Restnetz haben
- In der Computergrafik üblicherweise Oberflächennetze

http://www.cmap.polytechnique.fr/~peyre/geodesic_computations/ https://de.wikipedia.org/wiki/Polygonnetz http://doc.cgal.org/latest/Mesh_3/

Terminologie bei Polygonnetzen (Meshes)



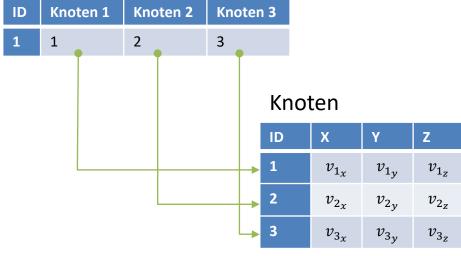
https://en.wikipedia.org/wiki/Polygon_mesh

Datenstrukturen bei Polygonnetzen

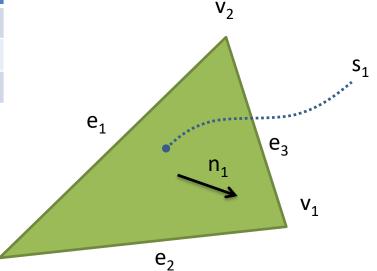
Knotenliste

Beispiel: Dreiecksnetz

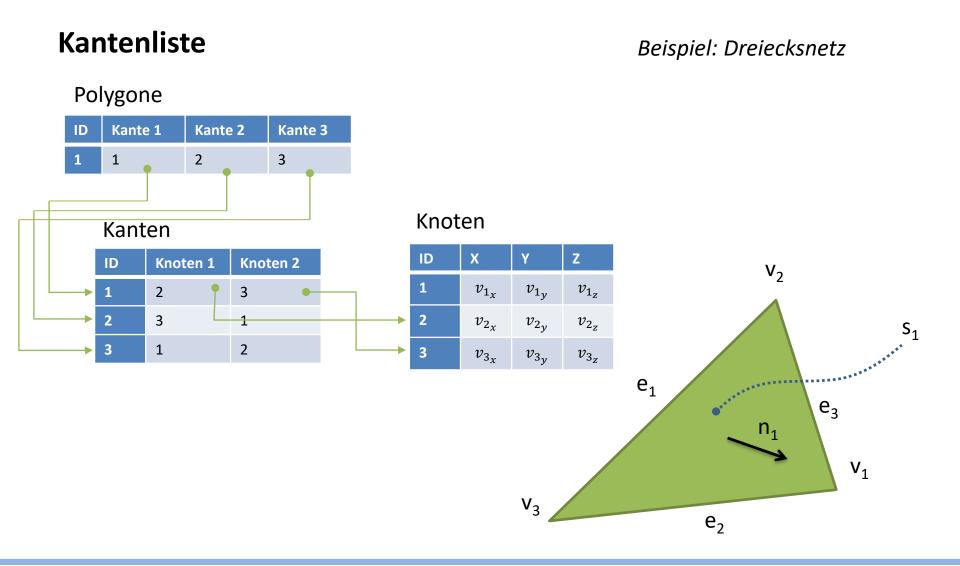
Polygone



 Polygon definiert als Liste von Zeigern auf Vertices



Datenstrukturen bei Polygonnetzen



Vergleich der Datenstrukturen

	Vorteile	Nachteile
Knotenliste	 Trennung von Geometrie und Netztopologie Geringer Speicherbedarf 	 Kanten werden mehrmals definiert Suche nach Polygonen, die eine Kante enthalten ineffizient
Kantenliste	 Trennung von Geometrie und Netztopologie Schnelle Bestimmung von Randkanten (Kanten mit nur einem Verweis auf Polygon 	 Suche nach Polygonen, die einen Vertex enthalten ineffizient

Winged Edge Datenstruktur

- Zusätzlich zu Kantenliste: Zeiger auf ankommende/abgehende Kanten
- Ermöglicht effizientere Abfragen, z.B. welche Polygone zu einer Kante gehören

Polygone

ID	Knoten 1	Knoten 2	Knoten 3
1	1	2	3

Knoten

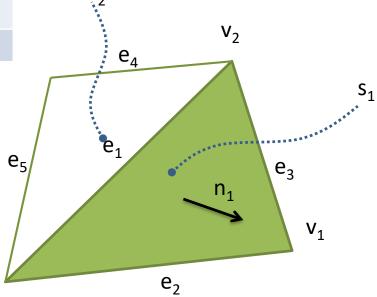
ID	X	Y	Z
1	$v_{1_{\chi}}$	v_{1_y}	v_{1_Z}
2	v_{2_x}	v_{2_y}	v_{2_z}
3	v_{3_x}	v_{3_y}	v_{3_z}

٧₂

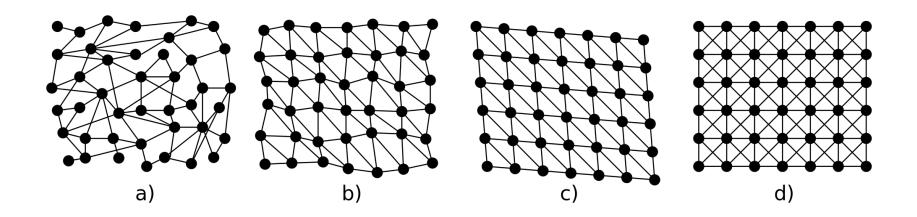
Kanten

QI	Vertex Start	Vertex Ende	Polygon links	Polygon rechts	Linke Traverse, vorher	Linke Traverse, nach	Rechte Traverse, vorh.	Rechte Traverse, nach
1	2	3	1	2	3	2	4	5
2	3	1	1		1	3		
3	1	2	1		2	1		

Beispiel: Dreiecksnetz



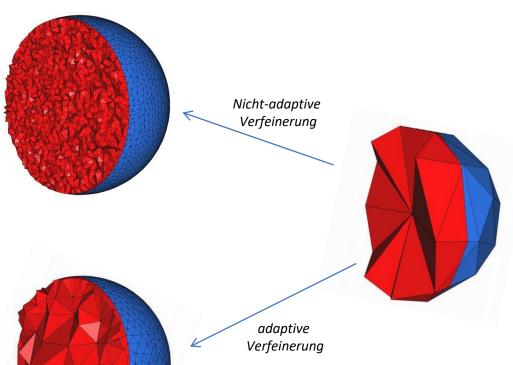
Eigenschaften von Polygonnetzen



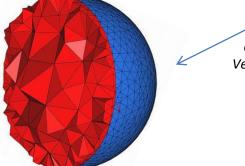
- a) Keine besonderen Eigenschaften
- b) Strukturiertes Polygonnetz
- c) Strukturiertes, reguläres Polygonnetz
- d) Strukturiertes, reguläres, orthogonales Polygonnetz

Eigenschaften von Polygonnetzen

- Nicht-adaptive Polygonnetze
 - Global gleiche Auflösung

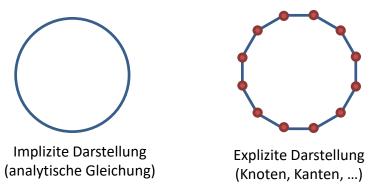


- Adaptive Polygonnetze
 - Lokale Verfeinerung der Auflösung



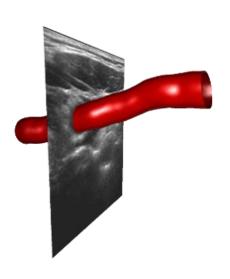
Polygonisierung

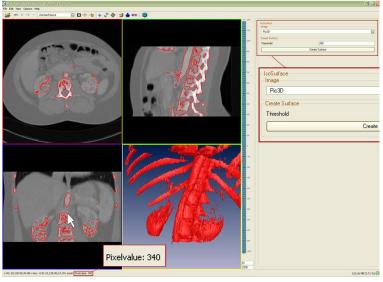
- Polygonisierung (Meshing) = Prozess der Berechnung einer Repräsentation einer gegebenen Oberfläche durch einfache Oberflächenpolygone (meist Dreiecke).
- Oberfläche in *impliziter* Darstellung: Lösung einer Gleichung, z.B. Kugelgleichung $f \colon r^2 = x^2 + y^2 + z^2$
- Extraktion aus Daten, z.B. Oberflächenscan, Iso-Fläche aus Volumendaten
- Für die Computergrafik meist *explizite* Darstellung einer Oberfläche notwendig → Polygonisierung ("Meshing")
- Annahme f
 ür Algorithmen: glatte Oberfl
 äche, keine Singularit
 äten

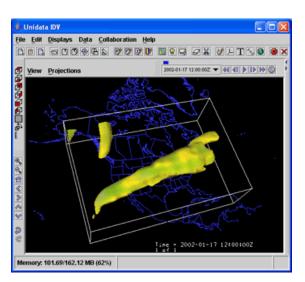


Isoflächen

- Flächen, die im Raum benachbarte Punkte gleicher Merkmale oder Werte miteinander verbinden.
- Oft verwendet um aus Bildern/Volumendaten Oberflächen zu extrahieren,
 - z.B. Organe in der Medizin
 - z.B. Meteorologie um Gebiete gleicher Eigenschaften räumlich darzustellen



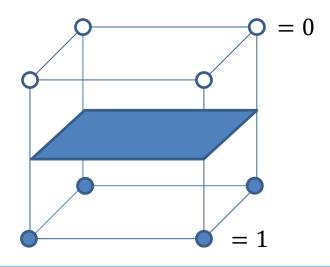




41

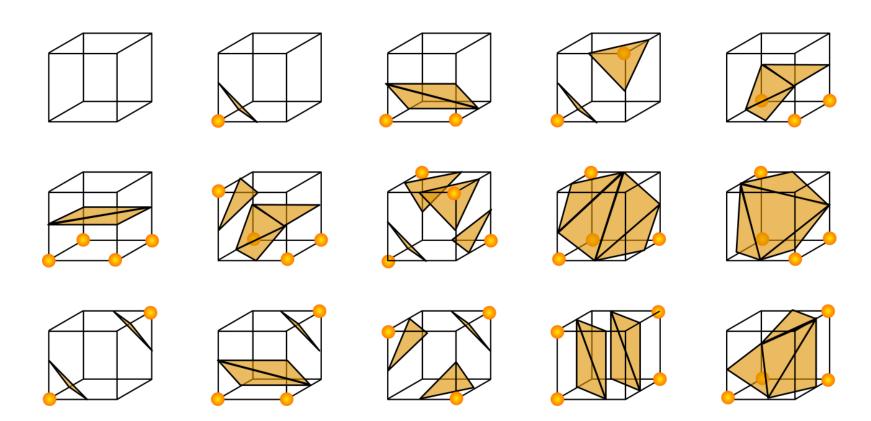
http://www.imfusion.de/products/imfusion-suite http://docs.mitk.org/2014.10/IsoSurfaceGUI.png http://www.unidata.ucar.edu/software/idv/docs/userguide/examples/3DSurface.html

- Oft verwendet bei Erzeugung von Polygonnetzen aus Volumendaten: Annäherung einer Isofläche mit Polygonen (meist Dreiecke).
- Grundidee:
 - Unterteilung des Raums in kleine Würfel (Cubes)
 - Für jeden Würfel: Schnitt mit Objektoberfläche (Isofläche) bestimmen (*lokales Meshing*)
- Umsetzung für Meshgenerierung aus Voxeldaten
 - lacktriangle Jeder Knoten v des Würfels liegt auf einem Voxel des Volumendatensatzes
 - Voxel-Grauwert I + Schwellwert T bestimmt ob Knoten innerhalb oder außerhalb des Objektes liegt. Zuordnung eines Wertes an jedem Knoten:



0 falls
$$I(v) < T$$

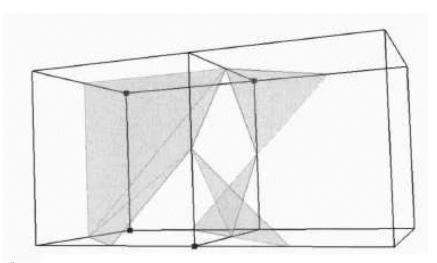
 15 mögliche Würfelklassen entsprechend der Verteilung der Werte an den Knoten



https://de.wikipedia.org/wiki/Marching_Cubes

- Knoten des Polygonnetzes = Schnittpunkte der Oberfläche mit den Würfelkanten
 - Bestimmt durch lineare Interpolation der Grauwerte der zwei Vertices einer Würfelkante
- Bestimmung der Normalen der Oberfläche:
 - Schätzen des Grauwertgradienten an den Knoten des Würfels
 - Interpolation des Gradienten am berechneten Knoten des Polygonnetzes
- Zusammensetzen der Oberflächen aller Würfel ergibt gesamtes Polygonnetz des Objektes

- Vorteile:
 - Schnelle Implementierung über Lookup-Table
- Nachteile:
 - Löcher in der Oberfläche, Mehrdeutigkeitsprobleme
 - Hohe Anzahl Polygone
 - Probleme bei spitzen Details an Oberflächen



G.M. Treece, R.W. Prager, A.H. Gee, "Regularised marching tetrahedra: improved iso-surface extraction"; Computers & Graphics Volume 23, Issue 4, Pages 583–598, August 1999

Triangulation

= Teilung einer Oberfläche in Dreiecke

Polygon-Triangulation

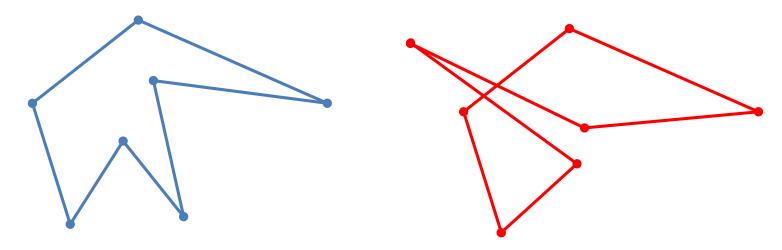
- Unterteilung gegebener Polygone in Dreiecke (= Tesselation)
- Algorithmen i.d.R. abhängig von Eigenschaften des Polygons

Punktwolken-Triangulation

- Triangulation komplexer Geometrien (z.B. aus Oberflächenscan)
- Verbinden der Vertices zu Dreiecken
- Mehr oder weniger Einschränkung der Eigenschaften und Meshqualität
 - z.B. Maximierung des Innenwinkels des Dreiecks

Polygontriangulation

- Triangulations-Theorem:
 - Jedes einfache Polygon hat eine Triangulation
 - Jede Triangulation eines n-gons besteht aus genau n-2 Dreiecken
- Ein einfaches Polygon ist ein geschlossener Kantenzug der sich nicht selbst schneidet.

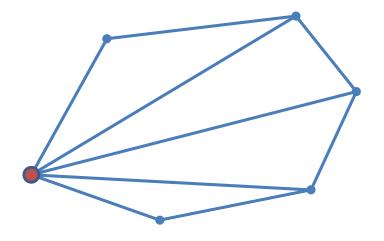


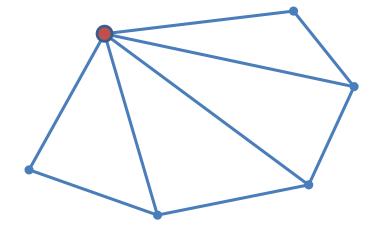
47

Jedes konvexe Polygon ist ein einfaches Polygon.

Polygontriangulation: konvexe Polygone

- trivial, siehe GL_TRIANGLE_FAN
- Verbinden eines Vertex mit allen anderen





Startvertex bestimmt u.U. Ergebnis

Polygontriangulation: einfache Polygone

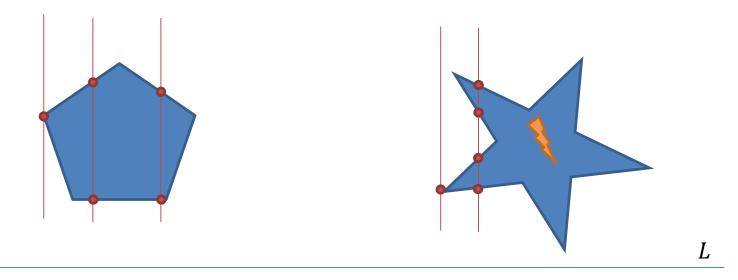
- Naiver Algorithmus für einfache Polygone: Bruteforce Diagonalen-Suche:
 - Durchlaufen aller Vertices des Polygons entlang der Polygonkante
 - Vorhergehenden und nachfolgenden Vertex verbinden
 - Rekursives Vorgehen für entstehende Teil-Polygone

Beginn an linker Ecke

- Achtung: Befindet sich ein anderer Vertex im entstandenen Dreieck: Finde n\u00e4chste parallele Gerade zu dieser Kante durch einen der Vertices im Dreieck
- Aktueller Startvertex: Position halten bis Vertex nicht mehr Teil eines weiter teilbaren Polygons ist.

Monotonie von Polygonen

• Ein planares Polygon P ist monoton bzgl. einer Geraden L wenn jede Senkrechte zu L das Polygon maximal zweimal schneidet.



- Jedes konvexe Polygon ist auch monoton
- Jedes Polygon, das monoton zu jeder beliebigen Geraden L ist, ist auch konvex

Polygontriangulation: monotone Polygone

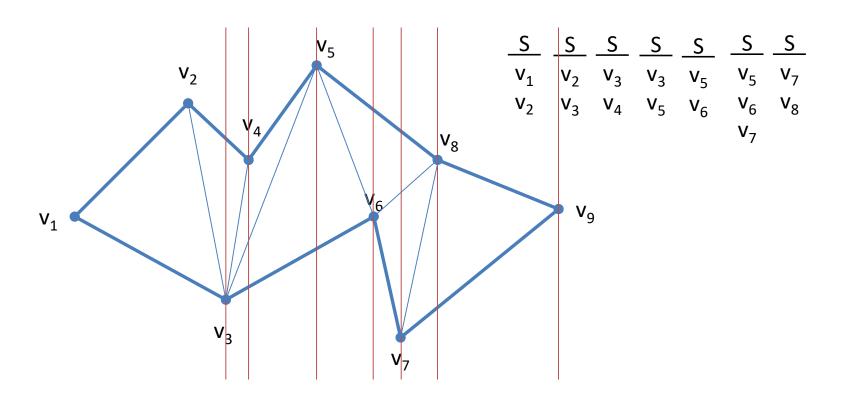
- Sweep-Line-Algorithmus: am Beispiel x-monotones Polygon
- Initialisierung:
 - Sortiere Vertices nach x-Koordinate (1. Kriterium) \rightarrow v_1 ... v_n
 - Erzeuge Stack S mit nicht-bearbeiteten Punkten: v₁ (S.top-1) und v₂ (S.top)
- Pseudo-Code:

```
FOR i=3 bis n  
IF v_i auf <u>anderer</u> Seite als S.top  
Kante von v_i zu Punkten in S bis auf Untersten  
Entferne alle Punkte aus S  
Lege v_{i-1} und v_i auf S  
ELSE  
WHILE S.top-1 <u>nicht</u> für v_i von S.top verdeckt wird  
Erstelle Kante von v_i nach S.top-1 und entferne S.top Lege v_i auf S
```

Füge Kante von v_n zu Punkten in S bis auf Obersten und Untersten ein

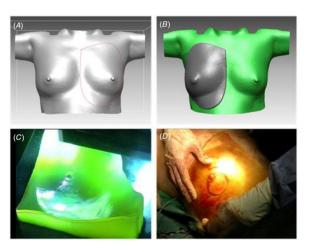
Polygontriangulation: monotone Polygone

Beispiel:



Punktwolkengenerierung

- Z.B. Automatisiert durch 3D Scanner: Abtastung der Oberfläche an diskreten Punkten
- Z.B. Manuelle oder automatische Extraktion aus Bilddaten

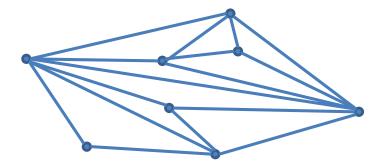


http://www.lmi3d.com/blog/medical-applications-3d-scanning http://medicalphysicsweb.org/cws/article/research/47264 http://gispoint.de/news-einzelansicht/1395-neue-wege-der-datenerfassung-im-baubereich.html

Punktwolkentriangulation

Triangle Splitting

- Bilden der konvexen Hülle aus der Punktmenge
- Triviale Triangulation des konvexen Polygons
- Für jeden inneren Punkt: Einfügen von Kanten zu den Vertices des umgebenden Dreiecks (in 3D Tetraeder!)

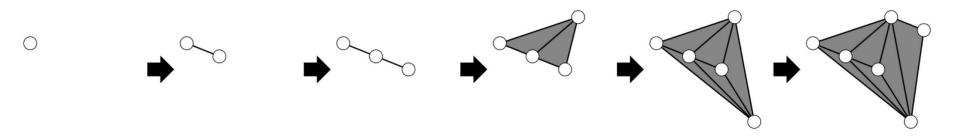


- 3D Punktwolken: Evtl. Identifizierung der Oberfläche aus dem resultierenden 3D Mesh!
- Vorsicht bei nicht-konvexen Punktwolken: schlecht-gestelltes Problem

Punktwolkentriangulation

Incremental construction

- Sortiere Vertices nach Ihrer x-Koordinate
- Die ersten drei Punkte bilden ein Dreieck
- Verbinde jeden weiteren Punkt mit den für ihn "sichtbaren" bisherigen Punkten
- Sichtbarkeit: die neue Kante darf kein bisheriges Dreieck schneiden

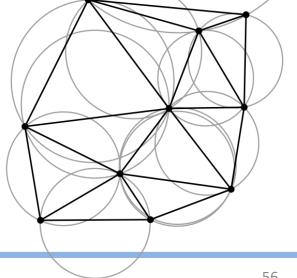


http://www.cse.ust.hk/~scheng/book/Delmesh/chapter2.pdf

- Für Interpolationen z.B. bei der Beleuchtung sind Dreiecksnetze mit möglichst großen Innenwinkeln besser geeignet.
- Delaunay Triangulation maximiert den minimalen Winkel in einem Dreieck
- Benannt nach russischem Mathematiker Boris Nikolajewitsch Delone (1890–1980, franz. Form des Nachnamens: Delaunay)

Grundprinzip: Der Umkreis jedes Dreiecks des Netzes darf keine weiteren Vertices der vorgegebenen Verticemenge enthalten

In 3D: Umkugel-Bedingung für Tetraeder-Generierung



• Test ob ein Punkt v im Umkreis eines Dreiecks abc liegt (2D): Berechnung der Determinante det der Matrix D

$$\det(D) = \begin{vmatrix} a_x & a_y & a_x^2 + a_y^2 & 1 \\ b_x & b_y & b_x^2 + b_y^2 & 1 \\ c_x & c_y & c_x^2 + c_y^2 & 1 \\ v_x & v_y & v_x^2 + v_y^2 & 1 \end{vmatrix}$$

- det(D) < 0: v liegt außerhalb des Umkreises des Dreiecks abc
- det(D) = 0 : v liegt auf dem Umkreises des Dreiecks abc
- det(D) > 0: v liegt innerhalb des Umkreises des Dreiecks abc

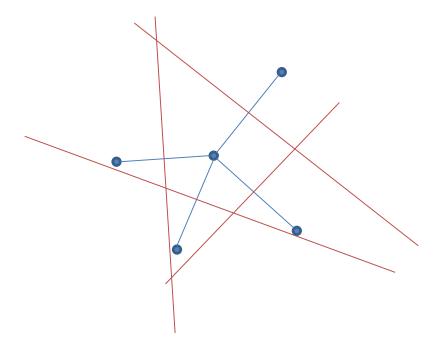
- Konstruktion Dualität mit Voronoi-Diagrammen:
 - *Gegeben*: eine Menge *M* von *n* Vertices.
 - Das Voronoi-Diagramm von M zerlegt die Ebene in n disjunkte Gebiete (sogenannte Voronoi-Zellen)
 - Die Voronoi-Zelle V eines Vertex v enthält genau einen Vertex aus M sowie alle geometrischen Punkte w, die näher an v als an jedem anderen Vertex v' liegen:

$$V(v) = \{ w \in \mathbb{R}^2 : \forall v' \in M \setminus \{v\} : dist(w, v) < dist(w, v') \}$$

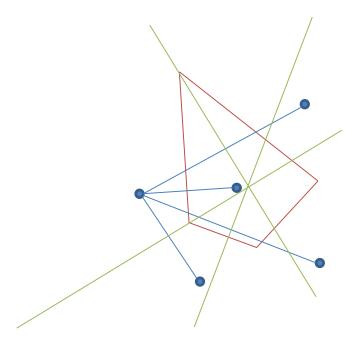
Naive Konstruktion: Bilden von Halbebenen h zwischen den Vertices v und v':

$$h(v,v') = \{ w \in \mathbb{R}^2 : dist(w,v) < dist(w,v') \}$$

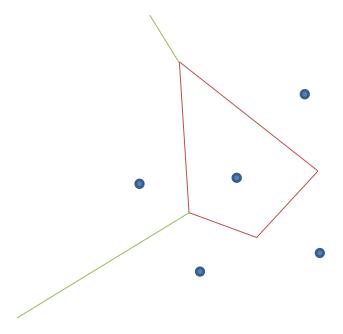
Konstruktion eines Voronoi-Diagramms



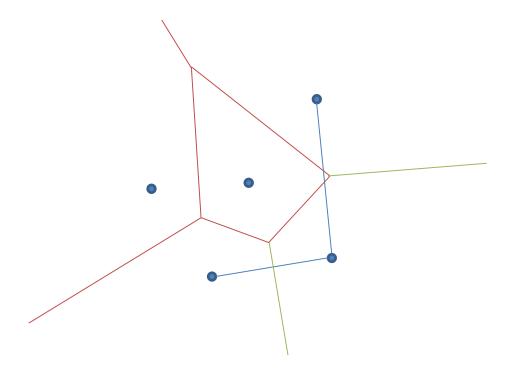
Konstruktion eines Voronoi-Diagramms



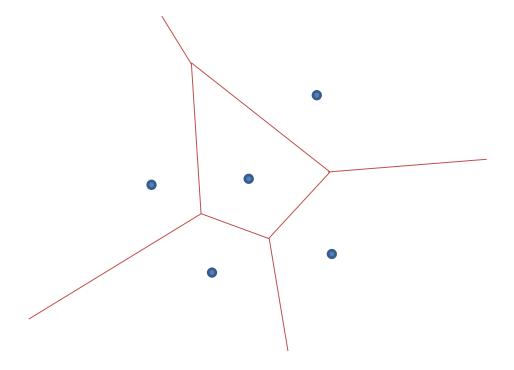
Konstruktion eines Voronoi-Diagramms



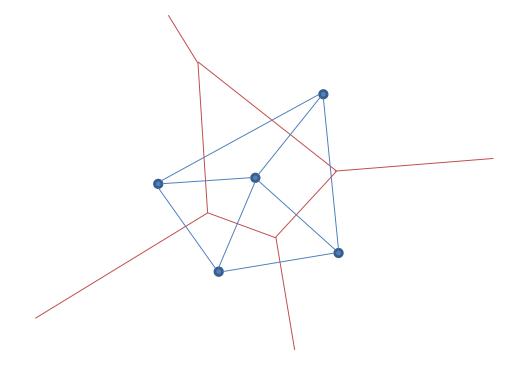
Konstruktion eines Voronoi-Diagramms



Konstruktion eines Voronoi-Diagramms



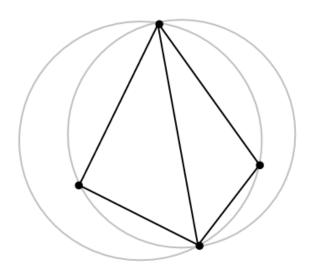
- Die Delaunay Triangulation einer Punktmenge ist der duale Graph eines Voronoi-Diagramms
- Konstruktion durch orthogonale Linie zu jeder Voronoi-Kante

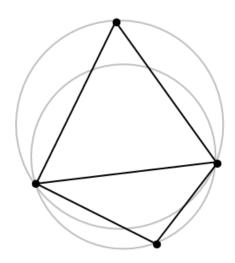


 Zahlreiche Algorithmen zur Berechnung der Delaunay Triangulation aus einer Punktmenge vorhanden

Edge Flipping

- Erzeugen eines beliebigen Dreiecksnetzes
- Für jedes Dreieck: prüfen ob der Umkreis einen weiteren Punkt einschließt, der Teil eines angrenzenden Dreiecks ist.
- Ist dies der Fall, wird ein Flip der gemeinsamen Kante durchgeführt.





https://de.wikipedia.org/wiki/Delaunay-Triangulation

Inkrementelle Methode:

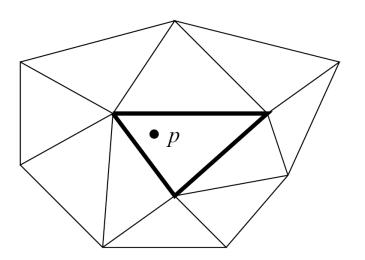
- Start: initiales Dreiecksnetz, das alle zu erwartenden Vertices einschließt
- Einfügen eines beliebigen neuen Vertex: Suche des Dreiecks, das den Vertex enthält
- Neuer Punkt wird mit den drei Vertices des gefundenen Dreiecks verbunden
 - → es entstehen drei neue Dreiecke, die nicht mehr unbedingt die Umkreisbedingung erfüllen
- Test jedes neuen Dreiecks auf Umkreisbedingung
- Korrekturen der Umkreisbedingung mit Flip-Algorithmus
- Nach jeder Korrektur gibt es möglicherweise Dreiecke die die Umkreisbedingung nicht mehr erfüllen: iteratives Vorgehen.

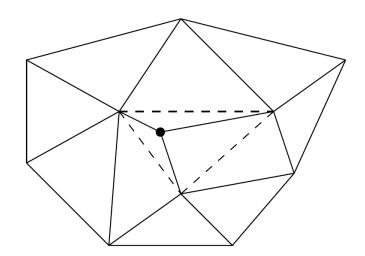
Modifikation der inkrementellen Methode

 Pro Schritt: Anfügen eines benachbarten Dreiecks (statt eines beliebigen Dreiecks bei der inkrementellen Methode)

Ableitung aus Voronoi-Graph

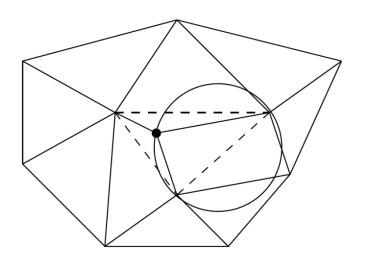
Beispiel: Inkrementelle Methode

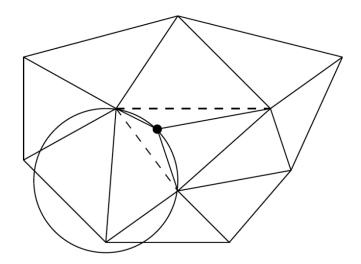




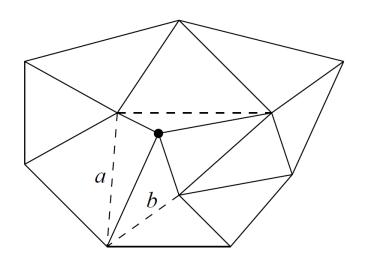
D. Lischinski: Incremental Delaunay Triangulation, in: P.S. Heckbert: "Graphics Gems", Academic Press, 1994

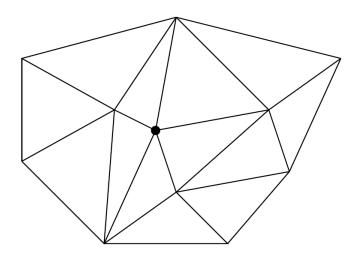
Beispiel: Inkrementelle Methode



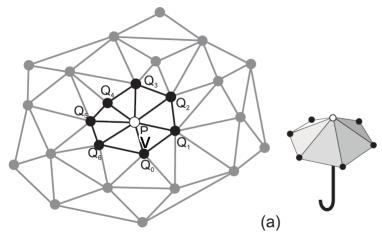


Beispiel: Inkrementelle Methode

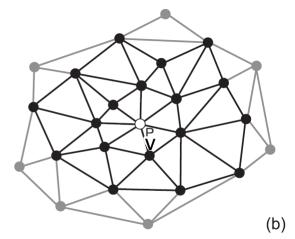




- Bei Generierung aus Volumendaten oft Ausreißer, Spikes, etc.
- Glättung im Allgemeinen durch Filter realisiert (siehe Bildverarbeitung)
- Zu filternde Region über Umbrella-Operator definiert (= Nachbarschafts-Operator)
 - lacktriangle Umbrella-Region 1. Grades: Alle Knoten q_i die mit v eine verbindende Kante haben
- Auswirkung der Glättung meist nur auf Knotenposition, Topologie bleibt erhalten



Region 1. Grades



Region 2. Grades

J. Haase: "Glättung von Polygonnetzen in medizinischen Visualisierungen", Diplomarbeit, Otto-von-Guericke-Universität Magdeburg, 2005

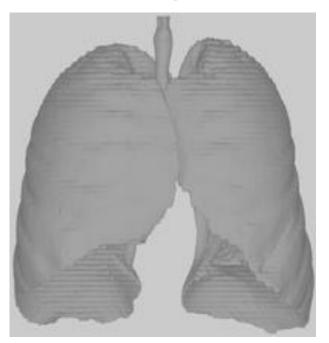
• Laplace-Filter: Verschiebung des zentralen Knotens v in das Zentrum seiner Nachbarn:

$$v' = \frac{1}{n} \sum_{i=0}^{n-1} q_i \quad \forall v \in M$$

- Iteratives Vorgehen: Glättungsgrad kann durch Anzahl der Iterationen eingestellt werden
- Nachteil:
 - Polygonnetze schrumpfen
 - Invertierte Elemente möglich
- Abwandlung: Einführung eines Relaxationswertes λ

$$v' = v + \frac{\lambda}{n} \sum_{i=0}^{n-1} (q_i - v) \quad \forall v \in M, 0 \le \lambda \le 1$$

Laplace-Glättung



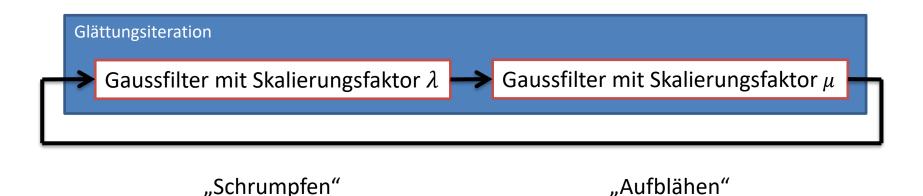
- Weitere Varianten der Laplace-Glättung:
 - Z.B. HC-Algorithmus: Iterative Vor- und Zurückverschiebung

 Gauß-Filter: Knotenpositionen werden aus gewichtetem Mittel der Umbrella-Region 1. Grades berechnet:

$$v' = v + \lambda \sum_{i=0}^{n-1} w_i (q_i - v)$$
 , $\forall v \in M, 0 \le \lambda \le 1$

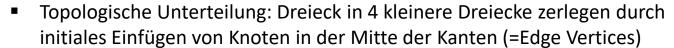
- Iteratives Vorgehen
- Wichtung w kann pro Iteration verschieden eingestellt werden.
 - Summe der Wichtungen w_i ergibt immer 1.
 - Gebräuchlich: $w_i = \frac{1}{n}$ oder Nachbarschaftsstrukturen mit einbeziehen (Distanzfunktion)
- Skalierungsfaktor λ analog zu Relaxationswert bei Laplace-Glättung
- Im Allgemeinen sehr ähnliche Ergebnisse wie Laplace-Filterung
 - Gut zur Unterdrückung von Rauschen (kleinen Artefakten)
 - Neigt ebenfalls zum Schrumpfen

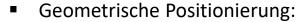
- Lowpass-Filter: zweifache Ausführung der Gauss-Filterung mit unterschiedlichen Skalierungsfaktoren
 - lacktriangle Einführung eines zweiten Skalierungsfaktors μ mit negativem Wert
 - μ erfüllt die Bedingung $0 < \lambda < -\mu$
 - μ sollte einen "geringfügig" größeren Wert als λ haben.



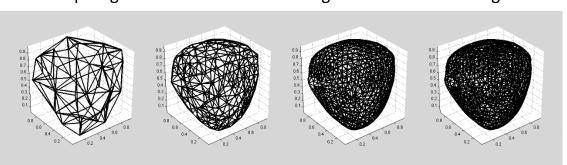
- Verringert Schrumpfen des Meshs
- Erhält Details besser als Laplace- und Gauss-Filterung
- Benötigt mehr Iterationen um optisch glatte Netze zu erzeugen

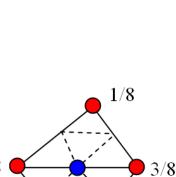
- Mesh Subdivision: Verfeinerung des Mesh durch neue Knoten, gleichzeitige Verschiebung der Knoten (Topologie-Änderung!)
- Zwei Verarbeitungsschritte:
 - 1) Topologische Unterteilung
 - 2) Geometrische Positionierung





- Edge Vertices: Lineare Kombination der benachbarten Knoten
- Ursprüngliche Vertices: Verschiebung anhand Umbrella-Region.





1/8

https://graphics.stanford.edu/~mdfisher/subdivision.html

http://www.mathworks.com/matlabcentral/fileexchange/32727-fast-loop-mesh-subdivision