[Code] Neuesn Code ergänzt

This commit is contained in:
Andre Meyering 2018-11-21 14:42:08 +01:00
parent b08c00ce43
commit 1bd0638da8
3 changed files with 1227 additions and 0 deletions

View file

@ -29,3 +29,6 @@ target_link_libraries(mesh ${OPENGL_LIBRARIES} ${GLUT_LIBRARY})
add_executable (mesh_shading template_meshVisualisierung_projektion_depthBuffer_aa.c) add_executable (mesh_shading template_meshVisualisierung_projektion_depthBuffer_aa.c)
target_link_libraries(mesh_shading ${OPENGL_LIBRARIES} ${GLUT_LIBRARY}) target_link_libraries(mesh_shading ${OPENGL_LIBRARIES} ${GLUT_LIBRARY})
add_executable (mesh_beleuchtung template_meshVisualisierung_beleuchtung.c)
target_link_libraries(mesh_beleuchtung ${OPENGL_LIBRARIES} ${GLUT_LIBRARY})

View file

@ -0,0 +1,611 @@
#include <GL/glut.h>
#include <math.h>
#include <stdio.h>
#define ORTHO 1
#define PERSPECTIVE 2
#pragma warning(disable:4996)
void mouse(int button, int state, int x, int y);
void key(unsigned char key, int x, int y);
void init(void);
void reshape(int, int);
void display(void);
int main(int, char **);
void define_menu(void);
void idle(void);
void timer(int value);
void readcloud(char* filename);
void mouseactive(int x, int y);
void mouse(int button, int state, int x, int y);
void setProjection(int projType);
void setAntiAliasing(int state);
float cpoints[3 * 60000];
float cvnormals[3 * 60000];
float ccolors[3 * 60000];
int ccoord[10 * 3 * 60000];
float cnormals[10 * 3 * 60000];
int maxcoords = 0;
float cpointsmax[3];
float cpointsmin[3];
int cpoints_n = 0;
float xoff;
float yoff;
float zoff;
float zoom;
int angle1;
int angle2;
const float stepsize = 0.05;
const float anglestepsize = 0.01;
int displaymodus = 1;
int pressedbutton = 0;
int startx, starty, startz;
int startangle1;
int startangle2;
float startxoff;
float startyoff;
float startzoff;
// default values
int projType = PERSPECTIVE; // default: perspective projection
int lights = 0;
int shading = 0;
float shininess = 2;
////////////////////////////////////////////////////////////////////////////////////////////////////
// FARBEN DER LICHT KOMPONENTEN
// LICHT POSITION
////////////////////////////////////////////////////////////////////////////////////////////////////
// short cut color white
float white[3] = { 0.5, 0.5, 0.5 };
int main(int argc, char** argv)
{
readcloud("/home/andre/shares/Bachelor/DHBW_AI_16/4303_Computergraphik_Hopp/Code/bones.txt"); // change this in case the point cloud is saved somewhere else.
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH); // Doublebuffer for animation
glutInitWindowSize(800, 800);
glutInitWindowPosition(400, 100);
glutCreateWindow("Mesh Visualization");
init();
glutMouseFunc(mouse);
glutMotionFunc(mouseactive);
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutKeyboardFunc(key);
printf("\n\nSTEUERUNG\nAnzeigemodi:\n");
printf("'0' nur Box\n'1' Points, Farbwerte nach Koordinate\n'2' Wireframe, Farbwerte nach Koordinate\n'3' Filled, Farbwerte nach Koordinate\n");
printf("'4' Points, Farbwerte aus Datei\n'5' Wireframe, Farbwerte aus Datei\n'6' Filled, Farbwerte aus Datei\n\n\n");
printf("Transformationen:\n linke Maustaste und x-y-Bewegung -> Rotation\n mittlere Maustaste und y-Richtung -> Zoom (entspricht einer Skalierung)\n");
printf(" rechte Maustaste und x-y-Bewegung -> Translation\n\n");
printf("Projektionsart aendern:\n");
printf("'o' orthographische Projektion, 'p' perspektivische Projektion \n\n");
printf("Licht Optionen\n");
printf(" 's' : Shading Modus aendern (Flat / Gouraud)\n");
printf(" 'l' : Licht ein-/ausschalten\n");
printf(" '+'/'-' : Spekular-Exponent aendern\n\n");
glutMainLoop();
return 0;
}
void displaycloud(int modus)
{
int i = 0;
float range[3];
float directionVector[3][2];
float n[3];
float currentColor[3];
int counter = 0;
glEnable(GL_NORMALIZE);
glFrontFace(GL_CW);
for (i = 0; i < 3; i++)
range[i] = cpointsmax[i] - cpointsmin[i];
if (modus > 0)
{
if (modus == 1 || modus == 4) { // Darstellung von Punkten
glPolygonMode(GL_FRONT_AND_BACK, GL_POINT);
}
if (modus == 2 || modus == 5) { // Darstellung des Drahtgittermodells
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
}
if (modus == 3 || modus == 6) { // Darstellung gefüllter Polygone
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
glBegin(GL_TRIANGLES);
for (i = 0; i < maxcoords + 1; i++)
{
if (modus > 3) { // Darstellung der Farben aus dem Mesh-File
currentColor[0] = ccolors[ccoord[i] * 3];
currentColor[1] = ccolors[ccoord[i] * 3 + 1];
currentColor[2] = ccolors[ccoord[i] * 3 + 2];
}
else { // Darstellung der interpolierten Farben entsprechend der Koordinaten
currentColor[0] = (cpoints[ccoord[i] * 3] - cpointsmin[0]) / range[0];
currentColor[1] = (cpoints[ccoord[i] * 3 + 1] - cpointsmin[1]) / range[1];
currentColor[2] = (cpoints[ccoord[i] * 3 + 2] - cpointsmin[2]) / range[2];
}
if (lights == 1) {
////////////////////////////////////////////////////////////////////////////////////////////////////////
// MATERIAL DEFINTION
////////////////////////////////////////////////////////////////////////////////////////////////////////
}
else {
glColor3f(currentColor[0], currentColor[1], currentColor[2]);
}
// for flat shading: one normal per triangle (before defintion of vertices) is sufficient
// cnormals contains the surface normal
if (counter == 0) {
if (shading == 0) {
glNormal3f(cnormals[i], cnormals[i + 1], cnormals[i + 2]);
}
}
counter++;
if (counter == 3) {
counter = 0;
}
// for gouraud shading we need the normal of each vertex
// cvnormals contains the vertex normals
if (shading == 1) {
glNormal3f(cvnormals[ccoord[i] * 3], cvnormals[ccoord[i] * 3 + 1], cvnormals[ccoord[i] * 3 + 2]);
}
glVertex3f(cpoints[ccoord[i] * 3], cpoints[ccoord[i] * 3 + 1], cpoints[ccoord[i] * 3 + 2]);
}
glEnd();
}
}
void display(void) {
if (lights == 1) {
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// LICHT DEFINITION
// SHADING DEFINTION
if (shading == 0) { // Flat Shading
}
else if (shading == 1) { // Gouraud Shading
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////
}
else {
glDisable(GL_LIGHTING);
}
// projection switch
switch (projType) {
case ORTHO:
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-2 - zoff, 2 + zoff, -2 - zoff, 2 + zoff, -2, 10);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0.0, 0.0, 0.01, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
break;
case PERSPECTIVE:
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(45.0, 1.0, 3.0, 7.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0, 0, 5 + zoff, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
break;
}
glPushMatrix();
// enable depth buffer and clear color/depth buffer
glClearDepth(1); // Default: 1
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS); // Default: GL_LESS
glColor3f(0.0, 0.0, 0.0);
// center and rotate
glTranslatef(xoff, yoff, 0);
glRotatef(angle2, 1.0, 0.0, 0.0);
glRotatef(angle1, 0.0, 1.0, 0.0);
//display
displaycloud(displaymodus);
// draw box
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, white);
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, white);
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, white);
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, shininess);
glColor3f(0.0, 0.0, 0.0);
glBegin(GL_LINE_LOOP);
glVertex3f(cpointsmax[0], cpointsmax[1], cpointsmax[2]);
glVertex3f(cpointsmin[0], cpointsmax[1], cpointsmax[2]);
glVertex3f(cpointsmin[0], cpointsmin[1], cpointsmax[2]);
glVertex3f(cpointsmax[0], cpointsmin[1], cpointsmax[2]);
glEnd();
glBegin(GL_LINE_LOOP);
glVertex3f(cpointsmax[0], cpointsmax[1], cpointsmin[2]);
glVertex3f(cpointsmin[0], cpointsmax[1], cpointsmin[2]);
glVertex3f(cpointsmin[0], cpointsmin[1], cpointsmin[2]);
glVertex3f(cpointsmax[0], cpointsmin[1], cpointsmin[2]);
glEnd();
glBegin(GL_LINES);
glVertex3f(cpointsmax[0], cpointsmax[1], cpointsmax[2]);
glVertex3f(cpointsmax[0], cpointsmax[1], cpointsmin[2]);
glVertex3f(cpointsmin[0], cpointsmax[1], cpointsmax[2]);
glVertex3f(cpointsmin[0], cpointsmax[1], cpointsmin[2]);
glVertex3f(cpointsmin[0], cpointsmin[1], cpointsmax[2]);
glVertex3f(cpointsmin[0], cpointsmin[1], cpointsmin[2]);
glVertex3f(cpointsmax[0], cpointsmin[1], cpointsmax[2]);
glVertex3f(cpointsmax[0], cpointsmin[1], cpointsmin[2]);
glEnd();
glPopMatrix();
glPopMatrix();
glutSwapBuffers(); // Buffer for animation needs to be swapped
}
void init(void)
{
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glHint(GL_LINE_SMOOTH_HINT, GL_NICEST);
glHint(GL_POINT_SMOOTH_HINT, GL_NICEST);
glHint(GL_POLYGON_SMOOTH_HINT, GL_NICEST);
glClearColor(0.99, 0.99, 0.99, 0.0);
glLoadIdentity();
xoff = 0.0;
yoff = 0.0;
zoff = 0.0;
zoom = 1;
angle1 = 45;
angle2 = 45;
}
void reshape(int w, int h)
{
glViewport(0, 0, w, h);
glClear(GL_COLOR_BUFFER_BIT);
}
void idle()
{
}
void timer(int value)
{
}
void readcloud(char* filename)
{
int i = 0;
int j = 0;
int k = 0;
int numVertices = 0;
int counter = 0;
float directionVector[3][2];
float n[3];
float x, y, z;
float temp;
int index;
int indexBegin;
int numNeighbouringFaces = 0;
FILE * f;
int abbruch = 0;
char str[200] = "";
printf("Lese '%s' ein\n", filename);
f = fopen(filename, "r");
printf("Ueberspringe Kopf...\n");
// Kopf Überspringen
while (!feof(f) && str[0] != '[')
fscanf(f, "%s", str);
printf("Lese Punkte ein...\n");
//Punkte einlesen
while (!feof(f) && abbruch == 0)
{
//einlesen
if (((i + 1) % 3) == 0)
fscanf(f, "%f %c", &cpoints[i], str);
else
fscanf(f, "%f", &cpoints[i]);
// Extremalwerte initialisieren
if (i < 3)
{
cpointsmax[i % 3] = cpoints[i];
cpointsmin[i % 3] = cpoints[i];
}
//Abbruch, wenn alle Punkte 0 sind, (nicht ganz sauber, aber funktioniert, wenn nicht zufällig der Urspung ein gültiger Punkt ist)
if (i > 3 && cpoints[i - 2] == 0 && cpoints[i - 1] == 0 && cpoints[i] == 0)
abbruch = 1;
//Extremalwerte gegebenenfalls erneuern
if (cpoints[i] > cpointsmax[i % 3] && cpoints[i] != 0)
cpointsmax[i % 3] = cpoints[i];
if (cpoints[i] < cpointsmin[i % 3] && cpoints[i] != 0)
cpointsmin[i % 3] = cpoints[i];
i++;
}
cpoints_n = i - 1;
printf("Es wurden %i Vertices gelesen\n", cpoints_n / 3);
printf("Koordinaten sind in den Intervallen [%f,%f] [%f,%f] [%f,%f]\n\n", cpointsmin[0], cpointsmax[0], cpointsmin[1], cpointsmax[1], cpointsmin[2], cpointsmax[2]);
abbruch = 0; i = 0;
//warten, bis es zu den colors geht
while (!feof(f) && str[0] != '[')
fscanf(f, "%s", str);
printf("Lese Farben ein...\n");
// Farben einlesen
while (!feof(f) && abbruch == 0)
{
//einlesen
if (((i + 1) % 3) == 0)
fscanf(f, "%f %c", &ccolors[i], str);
else
fscanf(f, "%f", &ccolors[i]);
//Abbruch, wenn alle farben 0 sind, (nicht ganz sauber, aber funktioniert, wenn nicht zufällig schwarz eine gültige Farbe ist)
if (i > 3 && ccolors[i - 2] == 0 && ccolors[i - 1] == 0 && ccolors[i] == 0)
abbruch = 1;
i++;
}
printf("Es wurden %i Farben eingelesen\n\n", (i - 1) / 3);
abbruch = 0; i = 0;
//warten, bis es zu den koordinaten geht
while (!feof(f) && str[0] != '[')
fscanf(f, "%s", str);
printf("Lese Koordinaten fuer die Dreiecke ein...\n");
// Koordinaten einlesen
while (!feof(f) && abbruch < 2)
{
//einlesen
fscanf(f, "%i %c", &ccoord[i], str);
//printf("%i\n",ccoord[i]);
//Abbruch, wenn alle Dreiecke 0 sind, (nicht ganz sauber, aber funktioniert, wenn nicht zufällig der Urspung ein gültiger Punkt ist)
if (ccoord[i] == -1)
{
i--;
abbruch++;
}
else
abbruch = 0;
i++;
}
maxcoords = i - 1;
printf("Es wurden %i Dreiecke eingelesen\n", (maxcoords + 1) / 3);// drei Punkte bilden ein Dreieck
fclose(f);
printf("Einlesen beendet\n\n");
for (j = 0; j < cpoints_n; j++) {
// normalize
cpoints[j] = cpoints[j] - cpointsmin[j % 3];
cpoints[j] = 2 * cpoints[j] / (cpointsmax[j % 3] - cpointsmin[j % 3]);
cpoints[j] = cpoints[j] - 1;
}
cpointsmin[0] = -1;
cpointsmin[1] = -1;
cpointsmin[2] = -1;
cpointsmax[0] = 1;
cpointsmax[1] = 1;
cpointsmax[2] = 1;
for (j = 0; j < cpoints_n; j++) {
if (j % 3 == 1) { // y-coordinate change with z-coordinate
temp = cpoints[j];
cpoints[j] = cpoints[j + 1];
cpoints[j + 1] = temp;
}
}
printf("Berechne Flächen- und Vertexnormalen...\n");
counter = 0;
for (i = 0; i < maxcoords + 1; i++) {
if (counter == 0) {
// Richtungsvektoren der Ebene aus jeweils zwei Seiten des Dreiecks
directionVector[0][0] = cpoints[ccoord[i + 1] * 3] - cpoints[ccoord[i] * 3];
directionVector[1][0] = cpoints[ccoord[i + 1] * 3 + 1] - cpoints[ccoord[i] * 3 + 1];
directionVector[2][0] = cpoints[ccoord[i + 1] * 3 + 2] - cpoints[ccoord[i] * 3 + 2];
directionVector[0][1] = cpoints[ccoord[i + 2] * 3] - cpoints[ccoord[i] * 3];
directionVector[1][1] = cpoints[ccoord[i + 2] * 3 + 1] - cpoints[ccoord[i] * 3 + 1];
directionVector[2][1] = cpoints[ccoord[i + 2] * 3 + 2] - cpoints[ccoord[i] * 3 + 2];
// Normalenvektor als Kreuzprodukt der beiden Seiten
n[0] = (directionVector[1][0] * directionVector[2][1]) - (directionVector[2][0] * directionVector[1][1]);
n[1] = (directionVector[2][0] * directionVector[0][1]) - (directionVector[0][0] * directionVector[2][1]);
n[2] = (directionVector[0][0] * directionVector[1][1]) - (directionVector[1][0] * directionVector[0][1]);
// Normalenvektor in Array speichern
cnormals[i] = n[0];
cnormals[i + 1] = n[1];
cnormals[i + 2] = n[2];
// Aufaddieren der Normalen an den Betroffenen Vertices, die das Dreieck bilden
cvnormals[ccoord[i] * 3] = cvnormals[ccoord[i] * 3] + n[0];
cvnormals[ccoord[i] * 3 + 1] = cvnormals[ccoord[i] * 3 + 1] + n[1];
cvnormals[ccoord[i] * 3 + 2] = cvnormals[ccoord[i] * 3 + 2] + n[2];
cvnormals[ccoord[i + 1] * 3] = cvnormals[ccoord[i + 1] * 3] + n[0];
cvnormals[ccoord[i + 1] * 3 + 1] = cvnormals[ccoord[i + 1] * 3 + 1] + n[1];
cvnormals[ccoord[i + 1] * 3 + 2] = cvnormals[ccoord[i + 1] * 3 + 2] + n[2];
cvnormals[ccoord[i + 2] * 3] = cvnormals[ccoord[i + 2] * 3] + n[0];
cvnormals[ccoord[i + 2] * 3 + 1] = cvnormals[ccoord[i + 2] * 3 + 1] + n[1];
cvnormals[ccoord[i + 2] * 3 + 2] = cvnormals[ccoord[i + 2] * 3 + 2] + n[2];
}
counter++;
if (counter == 3) {
counter = 0;
}
}
printf("... beendet.\n");
}
void key(unsigned char k, int x, int y);
void mouseactive(int x, int y)
{
if (pressedbutton == GLUT_LEFT_BUTTON)
{
angle1 = startangle1 + (x - startx) / 10;
angle2 = startangle2 + (y - starty) / 10;
}
if (pressedbutton == GLUT_RIGHT_BUTTON)
{
xoff = startxoff + (float)(x - startx) / 100;
yoff = startyoff + (float)(y - starty) / 100;
}
if (pressedbutton == GLUT_MIDDLE_BUTTON)
{
zoff = startzoff + ((float)(y - startz) / 100);
}
glutPostRedisplay();
}
void mouse(int button, int state, int x, int y)
{
if (state == GLUT_DOWN)
{
pressedbutton = button;
startx = x;
starty = y;
startz = y;
startangle1 = angle1;
startangle2 = angle2;
startxoff = xoff;
startyoff = yoff;
startzoff = zoff;
}
else
pressedbutton = 0;
}
void MainMenu(int value)
{
switch (value) {
case 2:
key('q', 0, 0);
break;
}
}
void submenu1(int value)
{
}
void define_menu()
{
}
void key(unsigned char k, int x, int y)
{
switch (k) {
case 8: //BACKSPACE
init();
break;
case 27:
case 'q':
case 'Q':
exit(0);
case 'o':
projType = ORTHO;
printf("Projektion: ORTHOGRAPHIC\n");
glutPostRedisplay();
break;
case 'p':
projType = PERSPECTIVE;
printf("Projektion: PERSPECTIVE\n");
glutPostRedisplay();
break;
case 'l':
if (lights == 0)
lights = 1;
else
lights = 0;
break;
case '+':
shininess = shininess + 0.1;
printf(" Shininess: %f\n", shininess);
break;
case '-':
shininess = shininess - 0.1;
printf(" Shininess: %f\n", shininess);
break;
case 's':
if (shading == 1) {
shading = 0;
printf(" Shading = FLAT\n");
}
else if (shading == 0) {
shading = 1;
printf(" Shading = GOURAUD\n");
}
break;
default:
if (k > '0' - 1 && k < '7')
{
displaymodus = k - '0';
printf("Display-Modus: %i\n", displaymodus);
}
else
{
printf("Taste %c mit Steuerzeichen %i nicht belegt\n", k, k);
}
break;
}
glutPostRedisplay();
}

View file

@ -0,0 +1,613 @@
#include <glut.h>
#include <math.h>
#include <stdio.h>
#define ORTHO 1
#define PERSPECTIVE 2
#pragma warning(disable:4996)
void mouse(int button, int state, int x, int y);
void key(unsigned char key, int x, int y);
void init(void);
void reshape(int, int);
void display(void);
int main(int, char **);
void define_menu();
void idle();
void timer(int value);
void readcloud(char* filename);
void mouseactive(int x, int y);
void mouse(int button, int state, int x, int y);
void setProjection(int projType);
void setAntiAliasing(int state);
float cpoints[3 * 60000];
float cvnormals[3 * 60000];
float ccolors[3 * 60000];
int ccoord[10 * 3 * 60000];
float cnormals[10 * 3 * 60000];
int maxcoords = 0;
float cpointsmax[3];
float cpointsmin[3];
int cpoints_n = 0;
float xoff;
float yoff;
float zoff;
float zoom;
int angle1;
int angle2;
const float stepsize = 0.05;
const float anglestepsize = 0.01;
int displaymodus = 1;
int pressedbutton = 0;
int startx, starty, startz;
int startangle1;
int startangle2;
float startxoff;
float startyoff;
float startzoff;
// default values
int projType = PERSPECTIVE; // default: perspective projection
int lights = 0;
int shading = 0;
float shininess = 2;
////////////////////////////////////////////////////////////////////////////////////////////////////
// FARBEN DER LICHT KOMPONENTEN
// LICHT POSITION
////////////////////////////////////////////////////////////////////////////////////////////////////
// short cut color white
float white[3] = { 0.5, 0.5, 0.5 };
int main(int argc, char** argv)
{
readcloud("C:\\tmp\\bones.txt"); // change this in case the point cloud is saved somewhere else.
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH); // Doublebuffer for animation
glutInitWindowSize(800, 800);
glutInitWindowPosition(400, 100);
glutCreateWindow("Mesh Visualization");
init();
glutMouseFunc(mouse);
glutMotionFunc(mouseactive);
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutKeyboardFunc(key);
printf("\n\nSTEUERUNG\nAnzeigemodi:\n");
printf("'0' nur Box\n'1' Points, Farbwerte nach Koordinate\n'2' Wireframe, Farbwerte nach Koordinate\n'3' Filled, Farbwerte nach Koordinate\n");
printf("'4' Points, Farbwerte aus Datei\n'5' Wireframe, Farbwerte aus Datei\n'6' Filled, Farbwerte aus Datei\n\n\n");
printf("Transformationen:\n linke Maustaste und x-y-Bewegung -> Rotation\n mittlere Maustaste und y-Richtung -> Zoom (entspricht einer Skalierung)\n");
printf(" rechte Maustaste und x-y-Bewegung -> Translation\n\n");
printf("Projektionsart aendern:\n");
printf("'o' orthographische Projektion, 'p' perspektivische Projektion \n\n");
printf("Licht Optionen\n");
printf(" 's' : Shading Modus aendern (Flat / Gouraud)\n");
printf(" 'l' : Licht ein-/ausschalten\n");
printf(" '+'/'-' : Spekular-Exponent aendern\n\n");
glutMainLoop();
return 0;
}
void displaycloud(int modus)
{
int i = 0;
float range[3];
float directionVector[3][2];
float n[3];
float currentColor[3];
int counter = 0;
glEnable(GL_NORMALIZE);
glFrontFace(GL_CW);
for (i = 0; i < 3; i++)
range[i] = cpointsmax[i] - cpointsmin[i];
if (modus > 0)
{
if (modus == 1 || modus == 4) { // Darstellung von Punkten
glPolygonMode(GL_FRONT_AND_BACK, GL_POINT);
}
if (modus == 2 || modus == 5) { // Darstellung des Drahtgittermodells
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
}
if (modus == 3 || modus == 6) { // Darstellung gefüllter Polygone
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
glBegin(GL_TRIANGLES);
for (i = 0; i < maxcoords + 1; i++)
{
if (modus > 3) { // Darstellung der Farben aus dem Mesh-File
currentColor[0] = ccolors[ccoord[i] * 3];
currentColor[1] = ccolors[ccoord[i] * 3 + 1];
currentColor[2] = ccolors[ccoord[i] * 3 + 2];
}
else { // Darstellung der interpolierten Farben entsprechend der Koordinaten
currentColor[0] = (cpoints[ccoord[i] * 3] - cpointsmin[0]) / range[0];
currentColor[1] = (cpoints[ccoord[i] * 3 + 1] - cpointsmin[1]) / range[1];
currentColor[2] = (cpoints[ccoord[i] * 3 + 2] - cpointsmin[2]) / range[2];
}
if (lights == 1) {
////////////////////////////////////////////////////////////////////////////////////////////////////////
// MATERIAL DEFINTION
////////////////////////////////////////////////////////////////////////////////////////////////////////
}
else {
glColor3f(currentColor[0], currentColor[1], currentColor[2]);
}
// for flat shading: one normal per triangle (before defintion of vertices) is sufficient
// cnormals contains the surface normal
if (counter == 0) {
if (shading == 0) {
glNormal3f(cnormals[i], cnormals[i + 1], cnormals[i + 2]);
}
}
counter++;
if (counter == 3) {
counter = 0;
}
// for gouraud shading we need the normal of each vertex
// cvnormals contains the vertex normals
if (shading == 1) {
glNormal3f(cvnormals[ccoord[i] * 3], cvnormals[ccoord[i] * 3 + 1], cvnormals[ccoord[i] * 3 + 2]);
}
glVertex3f(cpoints[ccoord[i] * 3], cpoints[ccoord[i] * 3 + 1], cpoints[ccoord[i] * 3 + 2]);
}
glEnd();
}
}
void display(void) {
if (lights == 1) {
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// LICHT DEFINITION
// SHADING DEFINTION
if (shading == 0) { // Flat Shading
}
else if (shading == 1) { // Gouraud Shading
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////
}
else {
glDisable(GL_LIGHTING);
}
// projection switch
switch (projType) {
case ORTHO:
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-2 - zoff, 2 + zoff, -2 - zoff, 2 + zoff, -2, 10);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0.0, 0.0, 0.01, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
break;
case PERSPECTIVE:
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(45.0, 1.0, 3.0, 7.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0, 0, 5 + zoff, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
break;
}
glPushMatrix();
// enable depth buffer and clear color/depth buffer
glClearDepth(1); // Default: 1
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS); // Default: GL_LESS
glColor3f(0.0, 0.0, 0.0);
// center and rotate
glTranslatef(xoff, yoff, 0);
glRotatef(angle2, 1.0, 0.0, 0.0);
glRotatef(angle1, 0.0, 1.0, 0.0);
//display
displaycloud(displaymodus);
// draw box
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, white);
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, white);
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, white);
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, shininess);
glColor3f(0.0, 0.0, 0.0);
glBegin(GL_LINE_LOOP);
glVertex3f(cpointsmax[0], cpointsmax[1], cpointsmax[2]);
glVertex3f(cpointsmin[0], cpointsmax[1], cpointsmax[2]);
glVertex3f(cpointsmin[0], cpointsmin[1], cpointsmax[2]);
glVertex3f(cpointsmax[0], cpointsmin[1], cpointsmax[2]);
glEnd();
glBegin(GL_LINE_LOOP);
glVertex3f(cpointsmax[0], cpointsmax[1], cpointsmin[2]);
glVertex3f(cpointsmin[0], cpointsmax[1], cpointsmin[2]);
glVertex3f(cpointsmin[0], cpointsmin[1], cpointsmin[2]);
glVertex3f(cpointsmax[0], cpointsmin[1], cpointsmin[2]);
glEnd();
glBegin(GL_LINES);
glVertex3f(cpointsmax[0], cpointsmax[1], cpointsmax[2]);
glVertex3f(cpointsmax[0], cpointsmax[1], cpointsmin[2]);
glVertex3f(cpointsmin[0], cpointsmax[1], cpointsmax[2]);
glVertex3f(cpointsmin[0], cpointsmax[1], cpointsmin[2]);
glVertex3f(cpointsmin[0], cpointsmin[1], cpointsmax[2]);
glVertex3f(cpointsmin[0], cpointsmin[1], cpointsmin[2]);
glVertex3f(cpointsmax[0], cpointsmin[1], cpointsmax[2]);
glVertex3f(cpointsmax[0], cpointsmin[1], cpointsmin[2]);
glEnd();
glPopMatrix();
glPopMatrix();
glutSwapBuffers(); // Buffer for animation needs to be swapped
}
void init(void)
{
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glHint(GL_LINE_SMOOTH_HINT, GL_NICEST);
glHint(GL_POINT_SMOOTH_HINT, GL_NICEST);
glHint(GL_POLYGON_SMOOTH_HINT, GL_NICEST);
glClearColor(0.99, 0.99, 0.99, 0.0);
glLoadIdentity();
xoff = 0.0;
yoff = 0.0;
zoff = 0.0;
zoom = 1;
angle1 = 45;
angle2 = 45;
}
void reshape(int w, int h)
{
glViewport(0, 0, w, h);
glClear(GL_COLOR_BUFFER_BIT);
}
void idle()
{
}
void timer(int value)
{
}
void readcloud(char* filename)
{
int i = 0;
int j = 0;
int k = 0;
int numVertices = 0;
int counter = 0;
float directionVector[3][2];
float n[3];
float x, y, z;
float temp;
int index;
int indexBegin;
int numNeighbouringFaces = 0;
FILE * f;
int abbruch = 0;
char str[200] = "";
printf("Lese '%s' ein\n", filename);
f = fopen(filename, "r");
printf("Ueberspringe Kopf...\n");
// Kopf Überspringen
while (!feof(f) && str[0] != '[')
fscanf(f, "%s", str);
printf("Lese Punkte ein...\n");
//Punkte einlesen
while (!feof(f) && abbruch == 0)
{
//einlesen
if (((i + 1) % 3) == 0)
fscanf(f, "%f %c", &cpoints[i], str);
else
fscanf(f, "%f", &cpoints[i]);
// Extremalwerte initialisieren
if (i < 3)
{
cpointsmax[i % 3] = cpoints[i];
cpointsmin[i % 3] = cpoints[i];
}
//Abbruch, wenn alle Punkte 0 sind, (nicht ganz sauber, aber funktioniert, wenn nicht zufällig der Urspung ein gültiger Punkt ist)
if (i > 3 && cpoints[i - 2] == 0 && cpoints[i - 1] == 0 && cpoints[i] == 0)
abbruch = 1;
//Extremalwerte gegebenenfalls erneuern
if (cpoints[i] > cpointsmax[i % 3] && cpoints[i] != 0)
cpointsmax[i % 3] = cpoints[i];
if (cpoints[i] < cpointsmin[i % 3] && cpoints[i] != 0)
cpointsmin[i % 3] = cpoints[i];
i++;
}
cpoints_n = i - 1;
printf("Es wurden %i Vertices gelesen\n", cpoints_n / 3);
printf("Koordinaten sind in den Intervallen [%f,%f] [%f,%f] [%f,%f]\n\n", cpointsmin[0], cpointsmax[0], cpointsmin[1], cpointsmax[1], cpointsmin[2], cpointsmax[2]);
abbruch = 0; i = 0;
//warten, bis es zu den colors geht
while (!feof(f) && str[0] != '[')
fscanf(f, "%s", str);
printf("Lese Farben ein...\n");
// Farben einlesen
while (!feof(f) && abbruch == 0)
{
//einlesen
if (((i + 1) % 3) == 0)
fscanf(f, "%f %c", &ccolors[i], str);
else
fscanf(f, "%f", &ccolors[i]);
//Abbruch, wenn alle farben 0 sind, (nicht ganz sauber, aber funktioniert, wenn nicht zufällig schwarz eine gültige Farbe ist)
if (i > 3 && ccolors[i - 2] == 0 && ccolors[i - 1] == 0 && ccolors[i] == 0)
abbruch = 1;
i++;
}
printf("Es wurden %i Farben eingelesen\n\n", (i - 1) / 3);
abbruch = 0; i = 0;
//warten, bis es zu den koordinaten geht
while (!feof(f) && str[0] != '[')
fscanf(f, "%s", str);
printf("Lese Koordinaten fuer die Dreiecke ein...\n");
// Koordinaten einlesen
while (!feof(f) && abbruch < 2)
{
//einlesen
fscanf(f, "%i %c", &ccoord[i], str);
//printf("%i\n",ccoord[i]);
//Abbruch, wenn alle Dreiecke 0 sind, (nicht ganz sauber, aber funktioniert, wenn nicht zufällig der Urspung ein gültiger Punkt ist)
if (ccoord[i] == -1)
{
i--;
abbruch++;
}
else
abbruch = 0;
i++;
}
maxcoords = i - 1;
printf("Es wurden %i Dreiecke eingelesen\n", (maxcoords + 1) / 3);// drei Punkte bilden ein Dreieck
fclose(f);
printf("Einlesen beendet\n\n");
for (j = 0; j < cpoints_n; j++) {
// normalize
cpoints[j] = cpoints[j] - cpointsmin[j % 3];
cpoints[j] = 2 * cpoints[j] / (cpointsmax[j % 3] - cpointsmin[j % 3]);
cpoints[j] = cpoints[j] - 1;
}
cpointsmin[0] = -1;
cpointsmin[1] = -1;
cpointsmin[2] = -1;
cpointsmax[0] = 1;
cpointsmax[1] = 1;
cpointsmax[2] = 1;
for (j = 0; j < cpoints_n; j++) {
if (j % 3 == 1) { // y-coordinate change with z-coordinate
temp = cpoints[j];
cpoints[j] = cpoints[j + 1];
cpoints[j + 1] = temp;
}
}
printf("Berechne Flächen- und Vertexnormalen...\n");
counter = 0;
for (i = 0; i < maxcoords + 1; i++) {
if (counter == 0) {
// Richtungsvektoren der Ebene aus jeweils zwei Seiten des Dreiecks
directionVector[0][0] = cpoints[ccoord[i + 1] * 3] - cpoints[ccoord[i] * 3];
directionVector[1][0] = cpoints[ccoord[i + 1] * 3 + 1] - cpoints[ccoord[i] * 3 + 1];
directionVector[2][0] = cpoints[ccoord[i + 1] * 3 + 2] - cpoints[ccoord[i] * 3 + 2];
directionVector[0][1] = cpoints[ccoord[i + 2] * 3] - cpoints[ccoord[i] * 3];
directionVector[1][1] = cpoints[ccoord[i + 2] * 3 + 1] - cpoints[ccoord[i] * 3 + 1];
directionVector[2][1] = cpoints[ccoord[i + 2] * 3 + 2] - cpoints[ccoord[i] * 3 + 2];
// Normalenvektor als Kreuzprodukt der beiden Seiten
n[0] = (directionVector[1][0] * directionVector[2][1]) - (directionVector[2][0] * directionVector[1][1]);
n[1] = (directionVector[2][0] * directionVector[0][1]) - (directionVector[0][0] * directionVector[2][1]);
n[2] = (directionVector[0][0] * directionVector[1][1]) - (directionVector[1][0] * directionVector[0][1]);
// Normalenvektor in Array speichern
cnormals[i] = n[0];
cnormals[i + 1] = n[1];
cnormals[i + 2] = n[2];
// Aufaddieren der Normalen an den Betroffenen Vertices, die das Dreieck bilden
cvnormals[ccoord[i] * 3] = cvnormals[ccoord[i] * 3] + n[0];
cvnormals[ccoord[i] * 3 + 1] = cvnormals[ccoord[i] * 3 + 1] + n[1];
cvnormals[ccoord[i] * 3 + 2] = cvnormals[ccoord[i] * 3 + 2] + n[2];
cvnormals[ccoord[i + 1] * 3] = cvnormals[ccoord[i + 1] * 3] + n[0];
cvnormals[ccoord[i + 1] * 3 + 1] = cvnormals[ccoord[i + 1] * 3 + 1] + n[1];
cvnormals[ccoord[i + 1] * 3 + 2] = cvnormals[ccoord[i + 1] * 3 + 2] + n[2];
cvnormals[ccoord[i + 2] * 3] = cvnormals[ccoord[i + 2] * 3] + n[0];
cvnormals[ccoord[i + 2] * 3 + 1] = cvnormals[ccoord[i + 2] * 3 + 1] + n[1];
cvnormals[ccoord[i + 2] * 3 + 2] = cvnormals[ccoord[i + 2] * 3 + 2] + n[2];
}
counter++;
if (counter == 3) {
counter = 0;
}
}
printf("... beendet.\n");
}
void key(unsigned char k, int x, int y);
void mouseactive(int x, int y)
{
if (pressedbutton == GLUT_LEFT_BUTTON)
{
angle1 = startangle1 + (x - startx) / 10;
angle2 = startangle2 + (y - starty) / 10;
}
if (pressedbutton == GLUT_RIGHT_BUTTON)
{
xoff = startxoff + (float)(x - startx) / 100;
yoff = startyoff + (float)(y - starty) / 100;
}
if (pressedbutton == GLUT_MIDDLE_BUTTON)
{
zoff = startzoff + ((float)(y - startz) / 100);
}
glutPostRedisplay();
}
void mouse(int button, int state, int x, int y)
{
if (state == GLUT_DOWN)
{
pressedbutton = button;
startx = x;
starty = y;
startz = y;
startangle1 = angle1;
startangle2 = angle2;
startxoff = xoff;
startyoff = yoff;
startzoff = zoff;
}
else
pressedbutton = 0;
}
void MainMenu(int value)
{
switch (value) {
case 2:
key('q', 0, 0);
break;
}
}
void
submenu1(int value)
{
}
void define_menu()
{
}
void key(unsigned char k, int x, int y)
{
switch (k) {
case 8: //BACKSPACE
init();
break;
case 27:
case 'q':
case 'Q':
exit(0);
case 'o':
projType = ORTHO;
printf("Projektion: ORTHOGRAPHIC\n");
glutPostRedisplay();
break;
case 'p':
projType = PERSPECTIVE;
printf("Projektion: PERSPECTIVE\n");
glutPostRedisplay();
break;
case 'l':
if (lights == 0)
lights = 1;
else
lights = 0;
break;
case '+':
shininess = shininess + 0.1;
printf(" Shininess: %f\n", shininess);
break;
case '-':
shininess = shininess - 0.1;
printf(" Shininess: %f\n", shininess);
break;
case 's':
if (shading == 1) {
shading = 0;
printf(" Shading = FLAT\n");
}
else if (shading == 0) {
shading = 1;
printf(" Shading = GOURAUD\n");
}
break;
default:
if (k > '0' - 1 && k < '7')
{
displaymodus = k - '0';
printf("Display-Modus: %i\n", displaymodus);
}
else
{
printf("Taste %c mit Steuerzeichen %i nicht belegt\n", k, k);
}
break;
}
glutPostRedisplay();
}